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Chapter 1

Introduction

1.1 What is MOM?

MOM is an acronym for Modular Ocean Model. The model was designed and developed
by researchers at the Geophysical Fluid Dynamics Laboratory (GFDL/NOAA Department of
Commerce) as a numerical ocean modelling tool for use in studying ocean circulation over
a wide range of space and time scales. Institutionally, MOM is supported by GFDL. The
focus of development work is to maximize scientific productivity within the computational
environment at GFDL. However, the model is sufficiently general to be of use elsewhere.
Therefore, MOM is being made freely available to the general oceanographic and climate
research community as public domain software. Unless otherwise noted, MOM refers to
MOM 3 version 0 (MOM 3.0) which represents the state of the art in ocean modelling at GFDL
near the end of 1999.

This manual is included as part of MOM. Its purpose is to provide documentation as well as
guidance to aid in the educated use of MOM by exposing details of the salient theoretical and
numerical ideas upon which MOM is based. Without it, details inappropriate for published
papers would certainly be lost or at best remain obscure to all but a very few. Although the
bulk of this document has been written by two main authors, many researchers from around
the world have contributed as well and their work is acknowleged in their respective sections.
If questions arise, authors may be contacted for help. However, do not expect them to solve
your coding problems.

1.2 Accessing the manual, code, and database

The manual and FORTRAN code in their entirety may be obtained by anonymous ftp from
GFDL using:

ftp ftp.gfdl.gov use ftp as your login name and your e-mail address as password
cd pub/GFDL MOM3 Change to the pub/GFDL MOM2 directory
get manual3.0.ps.Z Copy the manual to your directory
get mom3.0.tar.Z Copy the model to your directory
quit disconnect from the ftp
uncompress manual3.0.ps.ZExpand to manual3.0.ps
uncompress mom3.0.tar.Z Expand to mom3.0.tar
tar xvf mom3.0.tar Extract MOM 3 from the tar file
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1.5 Special acknowledgments and disclaimers

1.5.1 Acknowledgments

To a large part, MOM owes its existence to Kirk Bryan and to Jerry Mahlman (the director of
GFDL) for creating an environment in which this work could take place. Continued strong
support comes from Robbie Toggweiler who is the current head of the ocean group at GFDL.
Their generosity is gratefully appreciated. Also appreciated is the time and efforts of countless
researchers who have tested beta versions, pointed out problems, and continue to suggest
improvements along with offering parameterizations. Clipart is from Corel Gallery.

1.5.2 Disclaimer

As with any research tool of this magnitude and complexity, bugs are inevitable and some
have undoubtedly survived the testing phase. Researchers are encouraged to bring them to
our attention.

Although the model will catch many oversights of the kind typically made by novices, it is
ultimately the responsibility of the researcher to insure that the combination of options being
used is relevant to the problem being studied. It is also stressed that the researcher accepts full
responsibility for verifying that their particular configuration is working correctly.

Anyone may use MOM freely on a ”use as is” basis. The authors of MOM assume no
responsibility (zero) for any problems, incorrect usage, or bugs.

1.5.3 Software license

U.S. Department of Commerce (DOC) Software License for MOM 3

1. Scope of License. Subject to all the terms and conditions of this license, DOC grants USER
the royalty-free, nonexclusive, non transferable, and worldwide rights to reproduce,
modify, and distribute MOM, herein referred to as the Product.

2. Conditions and Limitations of Use Warranties. Neither the U.S. Government, nor any
agency or employee thereof, makes any warranties, expressed or implied, with respect
to the Product provided under this License, including but not limited to the implied war-
ranties or merchantability and fitness for any particular purpose. Liability. In no event
shall the U.S. Government, nor any agency or employee thereof, be liable for any direct,
indirect, or consequential damages flowing from the use of the Product provided under
this License. Non-Assignment. Neither this License nor any rights granted hereunder
are transferable or assignable without the explicit prior written consent of DOC. Names
and Logos. USER shall not substitute its name or logo for the name or logo of DOC, or
any of its agencies, in identification of the Product. Export of technology. USER shall
comply with all U.S. laws and regulations restricting the export of the Product to other
countries. Governing Law. This License shall be governed by the laws of United States
as interpreted and applied by the Federal courts in the District of Columbia.

3. Term of License. This License shall remain in effect as long as USER uses the Product in
accordance with Paragraphs 1 and 2.
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would be a minimum set of useful ones: module grids and run grids which are used
to design the grid, size.h which is used to implement the grid size, and module topog
and run topog which are used to design the topography and geometry. Also, any
other subroutine requiring changes must be placed in this directory because Cray
script run mom looks to this MOM UPDATES directory for all updated code.

2. PREP UPDATES contains only code and CRAY T90 run scripts from the PREP DATA
directory which would have be altered to define the test case. Actually, none are
here since the ones in PREP DATA are already setup to do the test case. Typically
though, only run scripts need be copied into this directory to alter pathnames (near
the beginning of the scripts) which point to where interpolated initial conditions and
surface boundary conditions are to be written. The scripts are then executed from
this directory on the CRAY T90 to build the interpolated DATABASE appropriate
for the resolution specified by module grids.

3.3 The MOM Test Cases

MOM is executed by a CRAY T90 script run mom which is in directory MOM 3 on the work-
station side of the file structure. The script executes a test case global domain with a horizontal
resolution of 3◦ in longitude by about 2.8◦ in latitude with 15 vertical levels. This yields 122
points in longitude (120 + 2 for cyclic conditions) and 66 latitude rows (64 + 2 for boundary
rows which is a useful size for parallel processing tests with up to 64 processors). For simplicity
and portability, idealized internally generated geometry (not very accurate) and topography
(absolutetly bogus) are used. More realistic data can be easily included by enabling the option
for Scripps topography in the run script. Many diagnostics are enabled (to demonstrate that
they work) and output is in 32 bit IEEE format. As an alternative, an option for NetCDF
formatted output can be enabled within the run script.

Only a very few options are enabled to keep physics simple for the test cases. Basically, an
option is enabled for constant vertical mixing. In the horizontal, a variable horizontal mixing
parameterization is enabled which weights the constant horizontal viscosity coefficient by the
cosine of latitude to compensate for the convergence of meridians. This aids in resolving
the Munk boundary layer at each latitude yet keeps the Killworth time step restriction from
limiting the time step at high latitudes. When realistic topography is used, a light smoothing of
topography is also needed and enabled northward of 85N to reduce topographic slopes so the
Killworth condition remains satisfied. Latitudes northward of 75N are filtered with a fourier
filter to compensate for time step restrictions due to convergence of meridians.

The barotropic equation is solved by the method of rigid lid stream function although
options exist for an implicit and explicit free surface as well. The time steps are asynchronous
with 1 day for density and 1 hour for internal and external modes.

Test cases #0, #1, #2, and #3 use various types of surface boundary conditions with the
above configuration. They are selected by setting the CASE variable within script run mom as
follows:

• CASE=0 uses idealized surface boundary conditions which are a function of latitude
only and independent of time: zonally averaged annual mean Hellerman and Rosen-
stein (1983) wind stress with surface temperature and salinity damped back to initial
conditions on a time scale of 50 days using a thickness of about 25 meters. Initial condi-
tions are no motion and an idealized temperature (function of latitude and depth) and
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although since GFDL has no DEC Alpha’s, this has not been verified.
If executing on any workstation with a typical 32 bit word length, it is recommended that

double precision (usually a compiler option) be used otherwise numerical truncation may
significantly limit accuracy. On an SGI Indigo 4000 workstation, the options to do this are “-O2
-mips2 -r8 -align64 -Olimit 2160”.

For test cases #1 and #2, recall that data in the DATABASE is in 32 bit IEEE format. Routines
for reading this data (e.g. ic.F and sbc.F in PREP DATA) and preparing it for the model can
be compiled with 32 bit word length “-O2” and the write statements changed to output real*8
data.

Also note that when a direct access record length is being specified while executing in double
precision (as is done in MOM 3/SBC/MONTHLY/setatm.F), the number of words needs to be
doubled to account for writing double precision data.

3.9 NetCDF and time averaged data

All datasets with NetCDF format end with a “.nc” suffix. If these datasets contain time averaged
data, the time at which the data is defined is at the middle of the averaging period (not at the
end). For example, a monthly mean windstress for September would be defined at Sept 15th.
This is done to prevent confusion on plots. Otherwise, if the convention of placing the time
stamp at the end of the averaging period were followed, the same plot would show a date of
October 1st at zero hours.

3.10 Using Ferret

Here are some useful things to keep in mind when using Ferret to analyze diagnostic output
in Netcdf format.

• Ferret recognized files as being Netcdf format by the “use” command. For example, to
analyze the diagnostic file “snapshots.dat.nc”, try

use snapshots.dat.nc

If a message about negative values at the start of the time axis appears, it just means that
the time stamp in the file is before year 1900.

If a message appears complaining that “evenly spaced axis has edges definition: xt i
- ignored”, it just means that the grid has constant resolution and edges specifications
which have been added to the NetCDF file to account for non-uniform grid resolution is
being ignored. Nothing to worry about.

• All data on land points are currently set to a flag value of −1.E34 in MOM 3. In early
versions, the flag value was set to zero. Ferret can use either of these values to mask
out land points for plots. For example, if a flag value of zero was used, the temperature
(variable “temp”) at level k = 1 from a snapshot file “snapshots.yyyyyy.mm.dd.dta.nc”
can be plotted using
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shade if temp ne 0 then temp

If the flag value is −1.E34, the following command will produce the same plot

shade temp

because Ferret interprets −1.E34 as missing data.

• When analyzing data from global models where option cyclic has been enabled, it is
sometimes useful to move the Greenwich Meridian to the middle of a plot. Otherwise, the
Atlantic ocean will be split at the Greenwich Meridian between the eastern and western
sides of the plot. As an example, consider the file “snapshots.yyyyyy.mm.dd.dta.nc”
from the test case. Moving the Greenwich Meridian can be done in Ferret by defining a
new longitude axis “xnew” by cloning a portion of the original x-axis without the extra
longitudes (i=1 and i=92), and using option “modulo”. The Ferret command is

define axis/from_data/name=xnew/x/units=degrees x=[g=temp,i=2:91]

set axis/modulo xnew

The following Ferret commands will contour the stream function from file “snapshots.yyyyyy.mm.dd.dta.nc”
with the Greenwich with a longitudinal region specified from 20◦W to 20◦E.

set reg/x=20w:20e

fill psi[gx=xnew]

• Some NetCDF datasets such as Hellerman windstress which has been interpolated to
model resolution by script run sbc or Levitus data which has been interpolated to model
resolution by script run ic do not have land values flagged. The interpolated data from
which NetCDF formatted data is constructed contains linearly extrapolated values over
land (there is no information on which cells are land and which are ocean). The rea-
son for this is so that if changes are made to topography the datasets don’t need to
be re-generated. However, the un-interpolated Levitus NetCDF dataset produced by
script run levitus netcdf) has land values flagged. When comparing interpolated datasets
(without flagged land values) with model generated data, the land flags can easily be
generated for plotting purposes. For instance, suppose model generated temperature
(variable “temp” from “snapshots.yyyyyy.mm.dd.dta.nc” which is assumed to be the
first dataset [d=1]) is to be compared with interpolated Levitus temperature (variable
“t lev” from “levitus.dta.nc”) for March at level k = 2 (the second dataset [d=2]). The
following commands will show the interpolated Levitus data with land masked out

shade if temp[d=1] ne -1.E34 then t_lev[k=2,l=3,d=2,j=2:60]

If the flag value of “-1.E34” does not work then use a “0” instead. The l = 3 signifies the
month of March and the range on “j” is to make the latitude range match the range from
the file snapshots.yyyyyy.mm.dd.dta.nc for the test case resolution.
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3.11 Upgrading from MOM 1

MOM 1 included an upgrade script for incorporating changes. Since there is a major architec-
tural difference between MOM 1 and MOM 2, there are too many changes to offer a meaningful
upgrade approach from MOM 1. The only recourse is to bite the bullet and switch to the latest
release. It should be obvious that the appropriate time for switching is at the beginning of an
experiment but not in the middle of one.

3.12 Upgrading to the latest version of MOM

MOM 2 version 1.0 included a script “run upgrade sgi” for incorporating local changes into
newer versions of MOM 2. This approach has since been discarded in favor of a much better
one: reliance on the directory structure in MOM and a new utility ... the graphical difference
analyzer “gdiff” which exists on Silicon Graphics workstations and makes easy, painless work
out of what was once a difficult, time consuming, and complicated task. Even better is “xdiff”
which is an X windows based graphical difference analyzer. If similar tools are not available,
an alternative method outlined below will still work reasonable well, only not as easily as
using “gdiff” of “xdiff”. These utilities have become indispensable for development work at
GFDL.

Standard operating practice

First and foremost, as a matter of operating practice, NEVER change a routine within the parent
MOM 3 directory. Copy the routine first into an UPDATES sub-directory and make changes
there. A different UPDATES sub-directory should be maintained for each experiment. Variants
of routines within each UPDATES sub-directory can be kept in further sub-directories; with
each sub-directory inheriting routines to be changed from its parent directory and adding local
modifications; for example,

• PACIFIC/MOM UPDATES/HLFX

• PACIFIC/MOM UPDATES/HLFX/TEST1

In this way, a hierarchy of changes can be built. If this hierarchy is carefully designed, se-
lecting sub-directories to copy in decending order down the branches of the hierarchy will
allow any combination of updates to be applied. This can convieniently be done within
the run script. Look at script run mom to see how all routines are first copied from the
parent directory MOM 3 into a temporary working directory followed by all routines from
MOM 3/EXP/TEST CASE/MOM UPDATES. If there were a sub-directory hanging offof MOM UPDATES,
all routines from this last sub-directory would be copied next and so forth. After routines from
all sub-directories have been copied, the desired model will have been built in the working
directory.

Before starting to upgrade to a newer version of MOM, move the whole existing MOM 3
directory structure to MOM 3 OLD using

mv MOM_3 MOM_3_OLD

Then install the newer MOM 3 directory by uncompressing and extracting the tar file after
retrieving it from the GFDL anonymous ftp. Now, for illustrative purposes, assume all local
updates are kept in
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MOM_3_OLD/EXP/BOX/MOM_UPDATES

This sub-directory will be referred to as OLD UPDATES. It is important to realize that although
many of the routines in the newer version of MOM may have changed, only routines in
OLD UPDATES will have to be examined. Make a similar sub-directory within the new
MOM 3 directory using

mkdir MOM_3/EXP/BOX/MOM_UPDATES

Let this new sub-directory be referred to as NEW UPDATES. Note the list of files in OLD UPDATES.
Copy the corresponding files from the new MOM 3 directory into NEW UPDATES. If ad-
ditional personal files have been added to OLD UPDATES, then copy them as well into
NEW UPDATES.

3.12.1 The recommended method to incorporate personal changes

Go to the NEW UPDATES sub-directory and use “gdiff” or “xdiff” to compare each file (one
at a time) in OLD UPDATES with the corresponding one in NEW UPDATES. As an example,
consider the file “grids.F” and use the command

gdiff OLD_UPDATES/grids.F grids.F

Within “gdiff”, click the right mouse button to bring up the option menu. Select PICK
RIGHT to mark all changes from “grids.F” in NEW UPDATES. Then scroll through the
code and use the left mouse button to mark each local change to be taken from “grids.F”
in OLD UPDATES. In the event that part of a local change from OLD UPDATES overlaps a
change from NEW UPDATES, an editor can be used afterwards to make the resulting code as
intended. With “xdiff”, individual lines from overlapping changes can be selected from each
file which makes the use of an editor unnecessary. When done, use the right mouse button to
select WRITE FILE. The correct filename and path “NEW UPDATES/grids.F” should appear
as the default. After clicking on the OK button, this new file containing all marked changes
merged together will replace the existing file in NEW UPDATES.
When finished, all local changes will have been transferred to the files in NEW UPDATES. As
a check, use “gdiff” to compare routines in NEW UPDATES to the ones in the new MOM 3
directory. Only local changes should show up. As newer releases of MOM become available,
the above strategy for upgrading is strongly recommended. This method has been in use at
GFDL over the past year to incorporate new changes into the development version of MOM
as well as to upgrade researchers from older versions to the development version.

3.12.2 An alternative recommended method

If there is no access to a “gdiff” or “xdiff” utility, the alternative method will work well. Com-
pare each routine (one at a time) in OLD UPDATES to the corresponding one in MOM 3 OLD
to find local changes. Do this using “diff” with the “-e” option. As an example, take the file
“grids.F” and use the command

diff -e MOM_3_OLD/grids.F OLD_UPDATES/grids.F > mods
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echo "->usage: update oldfile changes newfile"

exit

endif

set oldfile = $1

set chgs = $2

set newfile = $3

set work = .temp

cat $chgs > $work

echo "w $newfile" >> $work

echo "q $newfile" >> $work

ed $oldfile < $work

/bin/rm $work

echo "->Done building $newfile from $oldfile + $changes"

If the above script is saved as file “update”, then the following one-liner will built the “newfile”
from the “oldfile”:

update oldfile changes newfile
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MOM Directory Structure

R.C.P.

OTHER EXP

Cray 

ARCHIVE

•Hellerman Stress
•Oort Air Temp
• Levitus T and S

MOM_2

EXP

TEST_CASE

•Hellerman Stress
•Oort Air Temp
• Levitus T and S
• Scripps Topography

OTHERS

DATABASE

MOM_2

Workstation

•Subroutines

ATMOS •Subroutines

MONTHLY •Subroutines

NETCDF •Subroutines

EXP

PREP_UPDATES
•Subroutines
•Run scripts

        SBC

•Subroutines
•Modules
•Run scripts

TIME_MEAN

MOM_UPDATES

TEST_CASE

•Subroutines
•Modules
•Run scripts

PREP_DATA •Subroutines
•Run scripts

OTHER EXP

Figure 3.1: Directory structure for MOM at GFDL
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θt = −∇ · [uθ + F(θ)] (4.5)

st = −∇ · [u s + F(s)] (4.6)

ρ = ρ(θ, s, z). (4.7)

The coordinate φ is latitude, which increases northward and is zero at the equator. λ is longi-
tude, which increases eastward with zero defined at an arbitrary longitude (e.g., Greenwich,
England). z is the vertical coordinate, which is positive upwards and zero at the surface of a
resting ocean. Boldface characters represent vector quantities.

4.2.1 Basic constants and parameters

All units in MOM are cgs.

• The Boussinesq density is given by (page 47, Gill 1982)

ρo = 1.035 g cm−3. (4.8)

• The mean acceleration from gravity is given by

g = 980.6 cm s−2. (4.9)

• The mean radius of the earth is given by

a = 6371 × 105 cm. (4.10)

This is the radius of a sphere having the same volume as the earth (page 597, Gill 1982).
For earth, the equatorial radius is about 6378 km and the polar radius is about 6357 km.
Neglect of such non-spheroidal effects is ubiquitous in ocean modeling. For a discussion
of the differences between spheroidal and the more exact oblate-spheroidal, refer to the
discussion in Veronis (1973).

• The Coriolis parameter is given by

f = 2Ω sinφ. (4.11)

The earth’s angular velocity Ω is comprised of two main contributions: the spin of the
earth about its axis, and the orbit of the earth about the sun. Other heavenly motions
can be neglected. Therefore, in the course of a single period of 24 * 3600 = 86400 s, the
earth experiences an angular rotation of (2π + 2π/365.24) radians. As such, the angular
velocity of the earth is given by

Ω =

(
2π + 2π/365.24

86400s

)

=

(
π

43082

)
s−1

= 7.292 × 10−5s−1. (4.12)
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qw > 0 indicating water entering the ocean. The accuracy of this equivalence is determined by
the deviation of the ratio of the fresh water density ρ f and the ocean density from unity

ρ f

ρ(z = η)
− 1. (4.38)

For the most applications this deviation should be smaller than the accuracy of the fresh water
flux data.

The identity

∂t(δV) = δA ∂th (4.39)

leads to the balance for the layer thickness

∂th + ∇h ·
∫ η

z1

uh = qw + w1. (4.40)

With a uniform velocity in the surface layer, this result takes the more familiar form

∂th + ∇h · (h uh) = qw + w1. (4.41)

4.4.2 Mass conservation

Now consider the mass of the infinitesimal column of water

δm =

∫ η

z1

dzρ δA. (4.42)

In this expression, ρ is the mass density. The column mass changes when either the volume or
the density is changed,

∂t(δm) = ρ(η) δA ∂tη +

∫ η

z1

dz∂tρ δA. (4.43)

Mass conservation implies that this change is due to mass flux through the box surface, i.e.,
from the convergence of the horizontal mass flux and from the water coming through the
bottom and through the free surface

∂t(δm) =

(
Qw + w1 ρ1 − ∇h ·

∫ η

z1

dzρuh

)
δA, (4.44)

where ρ1 is the density of water entering from the bottom of the layer, and Qw is the mass
flux density of water entering through the free surface. This result leads to the mass balance
equation for the surface layer

∂t

∫ η

z1

dzρ + ∇h ·
∫ η

z1

ρuh = Qw + w1 ρ1. (4.45)

A more transparent form emerges from the assumption of a vertically uniform density in the
surface layer, and δm ≈ ρs h δA, which leads to

∂t(ρs h) + ∇h · (hρs uh) = Qw + w1 ρ1, (4.46)
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4.6.1 Differential operators

In MOM, the radial coordinate is taken as

r = a + z (4.58)

where a is the earth’s radius. z = 0 is assumed to be the position of the resting ocean, which is
defined parallel to the geoid. z = −H(λ, φ) is the position of the ocean bottom. As mentioned
earlier, although the geoid is not a perfect sphere, the relatively mild deviations from a sphere
are ignored in MOM, which allows for spherical coordinates. Finally, since z = r − a, the unit
vector ẑ points in the radial direction r̂

ẑ = r̂. (4.59)

Consistent with the Traditional Approximation (see Marshall et al. 1997 for a review),
the differential operators used in the model take on the following form (see Appendix A of
Washington and Parkinson (1986) for derivations). The gradient operator is given by

∇Ψ = λ̂

(
Ψλ

a cosφ

)
+ φ̂

(
Ψφ

a

)
+ ẑΨz

= ∇hΨ+ ẑΨz. (4.60)

The three-dimensional divergence operator acting on a vector u = (uh,w) is given by

∇ · u =

(
1

a cosφ

)
[uλ + (v cosφ)φ] + wz

= ∇h · uh + wz. (4.61)

If u is the velocity field, then its three dimensional divergence vanishes since the fluid is always
assumed incompressible in MOM. The three-dimensional curl operator acting on the velocity
is given by

ω = λ̂

(
1

a

∂w

∂φ
− ∂v

∂z

)
+ φ̂

(
∂u

∂z
− 1

a cosφ

∂w

∂λ

)
+ ẑ

(
1

a cosφ

∂v

∂λ
− 1

a cosφ

∂(u cosφ)

∂φ

)
,

(4.62)

where ω = ∇∧u is the three dimensional vorticity vector. Often, the vertical component of the
vorticity will be written

ζ = ẑ · ω =
(

1

a cosφ

) [
vλ − (u cosφ)φ

]
. (4.63)

The three-dimensional Laplacian is given by

∇ · (∇Ψ) =

(
1

a2 cosφ

) (
1

cosφ
Ψλλ + (cosφ ·Ψφ)φ

)
+Ψzz

= ∇h · (∇hΨ) +Ψzz. (4.64)
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4.6.2 Leibnitz’s Rule

Leibnitz’s Rule for differentiation of integrals

∂

∂x

∫ g(x)

f (x)

dx′ F(x, x′) = F(x, g(x))
∂g(x)

∂x
− F(x, f (x))

∂ f (x)

∂x

+

∫ g(x)

f (x)

dx′
∂

∂x
F(x, x′) (4.65)

is employed especially when dealing with vertical integrals where the bottom topography
z = −H and free surface height z = η are integration limits.

4.6.3 Cross-products and the Levi-Civita symbol

In this manual, cross products are sometimes written with the notation

A × B = A ∧ B. (4.66)

This notation is consistent with many math and physics texts. Its use is helpful for those
situations when the usual × symbol can be mistaken for the spatial variable x.

When writing the components of a vector cross-product, it is often useful to employ the
Levi-Civita symbol ǫi jk

(A ∧ B)k = ǫi jk Ai B j, (4.67)

where repeated indices are summed over the spatial directions. The Levi-Civita symbol ǫi jk is
defined by

ǫi jk =



0, if any two labels are the same
1, if i, j, k is an even permutation of 1, 2, 3
−1, if i, j, k is an odd permutation of 1, 2, 3.

(4.68)

This symbol is anti-symmetric on each pair of indices.

4.6.4 Area element and volume element on a sphere

When considering budgets over finite domains, integration over an element of the sphere is
common. A useful bit of notation is the area of an infinitesimal element of the sphere

dΩ = a2 cosφ dφ dλ = a2 d(sinφ) dλ. (4.69)

With this notation, the volume element on the sphere takes the form

dx = dΩ dz. (4.70)

4.6.5 Vertical grid levels

For the interior part of the model ocean, discrete cells have time independent depths zk < 0.
In this case, the interior “layers” are most often called “levels” to make the distinction with
models for which the vertical coordinate evolves in time (e.g., isopycnal-layer models such as
that of Bleck et al., 1992, or Hallberg 1995), or models where the vertical coordinate is contoured
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according to the bottom topography (i.e., sigma-layer models such as that of Blumberg and
Mellor 1987 or Haidvogel et al. 1991). The top ocean cell, however, generally has a time
dependent upper surface height

z0 = η, (4.71)

where η, which can be positive or negative, represents the vertical distance from the sea surface
to the height z = 0 of a resting sea. In the rigid lid approximation, η = 0, and so all model cells
have fixed volumes, whereas for the free surface, η , 0.
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5.1.1 Vertical modes in MOM and their relation to eigenmodes

As discussed in Section 6.11 of Gill (1982), the linearized primitive equations for a stratified
fluid can be partitioned into a countably infinite (i.e., discrete) number of orthogonal eigen-
modes, each with a different vertical structure. Gill denotes the zeroth vertical eigenmode
the barotropic mode, and the infinity of higher modes are called baroclinic modes. Because
of the weak compressibility of the ocean, wave motions associated with the barotropic mode
are weakly depth dependent, and so correspond to elevations of the sea surface (see Hidgon
and Bennett 1996 for a proof of the weak depth dependence in a flat bottomed ocean). Conse-
quently, the barotropic field goes also by the name external mode. Barotropic or external waves
constitute the fast dynamics of the ocean primitive equations. Baroclinic waves are associated
with undulations of internal density surfaces, which motivates the name internal mode. Baro-
clinic waves, along with advection and planetary waves, constitute the slow dynamics of the
ocean primitive equations.

For a flat bottom ocean, the vertical eigenmode problem is straightforward to solve, and
many important ideas can be garnered from its analysis. For a free surface with a flat bottom,
Gill shows that the barotropic mode has a vertical velocity which is approximately a linear
function of depth, with the maximum vertical velocity at the free ocean surface and zero velocity
at the flat bottom. In contrast, for a rigid lid and flat bottom ocean, the barotropic mode is
depth independent and the vertical velocity identically vanishes. The baroclinic modes, as
they are associated with movements of the internal interfaces, are little affected by the surface
boundary condition. Therefore, the baroclinic modes in the free surface are quite similar to
those in the rigid lid. Note that nonlinearities and nontrivial bottom topography generally
couple the barotropic and baroclinic modes.

By construction, the depth averaged momentum equations only have solutions which
depend on the horizontal directions. Consequently, the depth averaged mode of a rigid lid
ocean model corresponds directly to the barotropic mode of the linearized rigid lid primitive
equations. Additionally, the rigid lid model’s depth dependent modes correspond to the
baroclinic modes of the linearized rigid lid primitive equations. Therefore, depth averaging in
the rigid lid model provides a clean separation between the linear vertical modes.

Just as for the rigid lid, the baroclinic modes are well approximated by the depth dependent
modes of the free surface ocean model, since the baroclinic modes do not care so much about the
upper surface boundary condition. In contrast, the ocean model’s depth averaged mode cannot
fully describe the free surface primitive equation’s barotropic mode, which is weakly depth
dependent. Therefore, some of the true barotropic mode spills over into the model’s depth
dependent modes. In other words, a linearized free surface ocean model’s depth averaged
mode is only approximately orthogonal to the model’s depth dependent modes. It turns out
that the ensuing weak coupling between the ocean model’s fast and slow linear modes can
be quite important for free surface ocean models, as described by Killworth et al. (1991) and
Higdon and Bennett (1996). The coupling, in addition to the usual nonlinear interactionas
associated with advection, topography, etc., can introduce pernicious linear instabilities whose
form is dependent on details of the time stepping schemes.

Regardless of the above distinction between vertically averaged and barotropic mode for
free surface models, it is common parlance in ocean modeling to refer to the vertically integrated
mode as the barotropic or external mode. This terminology is largely based on the common
use of the rigid lid approximation, for which there is no distinction. With the above discussion
kept in mind, there should be no confusion, and so the terminology will be used in this manual
for both the rigid lid and free surface formulations. Since there is little difference between the
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rigid lid and free surface baroclinic modes, it is quite sensible to use this term to refer to the
ocean model’s depth dependent modes.

5.1.2 Motivation for separating the modes

Although there are several technical problems associated with the separation into the vertically
averaged and vertically dependent modes, it is essential to build large scale ocean models using
some version of this separation for the following reasons:

1. Without a separation, the full momentum field will be subject to the CFL constraints
of the external mode gravity wave speed, which is roughly

√
g H = 200 − 250m s−1 for

ocean depths H = 4000m−6000m. When splitting, the internal modes, which are roughly
100 times slower than the external mode, can be integrated with approximatly 100 times
longer time steps, thus enhancing the utility of the model for climate simulations.

2. As vertical resolution is improved, the computation requirements for the barotropic mode
will remain the same. However, for a non-separated model, adding vertical resolution
adds more equations which are subject to the barotropic mode time step. Modern ocean
simulations are tending towards increasing the vertical resolution in order to improve
the representation of vertical physical processes such as boundary layers. Therefore,
the low efficiency of the non-separated model is a greater burden for these high vertical
resolution models.

There are two fundamental methods in MOM for solving the momentum equations. The
traditional rigid lid method completely filters out the very fast waves associated with the
external mode by fixing the ocean surface to be flat. This filtering transforms the generally
hyperbolic external mode problem to an elliptic problem. The free surface, in contrast, admits
the fast external waves and so care must be exercised in order to maintain numerical stability,
and additional care must be exercised due to the possible linear interaction between the depth
independent and depth dependent modes. It turns out that each method, and certain variants
thereof, imply far reaching consequences for the numerical methods and physical content
of the whole model. Much of the discussion in the remainder of this chapter elaborates on
these consequences. The remainder of this section provides a general overview of these two
methods, and later sections and chapters provide the full details.

5.2 Methods for solving the separated equations

In symbols, the horizontal velocity uh is separated into two parts. The vertically averaged
velocity representing the approximate barotropic or external part is given by

uh =
1

H + η

∫ η

−H

dz uh, (5.1)

where H(λ, φ) is the distance from the resting ocean surface z = 0 to the bottom, and η(λ, φ, t)
is the departure of the ocean surface height from z = 0. Typically, |η| ≤ 200cm, but may be
much larger, if tides are taken into consideration. In general, fields which are averaged over
the vertical coordinate will be denoted with the overbar. The residual

ûh = uh − uh (5.2)
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surface, the upper boundary is open or permeable, whereas the upper boundary in the rigid lid
method is closed or impermeable. Most notably, the vertical velocity w(z = 0) does not vanish
with the free surface. This comparison motivates the name non-rigid lid method for the handling
of surface boundary conditions in the free surface method.

An approach such as this was employed by Killworth et al. (1989) and is also used by
Dukowicz and Smith (1994). In general, the non-rigid lid approximation is well justified so long
as the top model grid box between z1 ≤ z ≤ 0 is much thicker than the maximum free surface
height η. In shallow seas or in models with very fine vertical grid spacings, this assumption is
not valid. More crucially, such models do not conserve total tracer or momentum. It is for this
reason that MOM has recently (Summer 1999) implemented a full free surface method in which
the effects of the undulating surface height has been incorporated into the depth dependent
fields. This method is fully documented in Griffies, Pacanowski, Schmidt, and Balaji (2000).
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6.2 Streamfunction and volume transport

The barotropic streamfunction is specified only to within a constant. As such, only differences
are physically relevant. In particular, consider the vertically integrated advective transport
between two points

Tab =

∫ b

a

dl n̂ ·
∫ 0

−H

dz uh, (6.7)

where dl is the line element along any path connecting the points a and b, and n̂ is a unit
vector pointing perpendicular to the path in a rightward direction when facing the direction of
integration. As written, Tab has units of volume/time, and so it represents a volume transport.
The definition of the barotropic streamfunction and Stokes’ Theorem renders

Tab =

∫ b

a

dl n̂ ·U

=

∫ b

a

dl n̂ · ẑ ∧ ∇hψ

= −
∫ b

a

dl ∇hψ · (ẑ ∧ n̂)

= −
∫ b

a

dl ∇hψ · t̂

= ψa − ψb, (6.8)

where

t̂ = ẑ ∧ n̂ (6.9)

is a unit vector tangent to the integration path, pointing in the direction of integration from
point a to point b. Therefore, the difference between the barotropic streamfunction at two
points represents the vertically integrated volume transport between the two points. It is for
this reason that the barotropic streamfunction is sometimes called the volume transport stream-
function. Note that Bryan (1969) defined the barotropic streamfunction with an extra factor of
the Boussinesq density ρo, such than ψbryan = ρo ψmom. Hence, the barotropic streamfunction
of Bryan has the dimensions of mass/time rather than volume per time, and so it represents a
mass transport streamfunction. Since MOM assumes a Boussinesq fluid, the difference is trivial.

6.3 Hydrostatic pressure with the rigid lid

The hydrostatic equation pz = −ρ g can be integrated from the surface z = 0 to some position
z < 0 to yield

p(λ, φ, z, t) = pa(λ, φ, t) + pl(λ, φ, t) + g

∫ 0

z

dz ρ

= pa(λ, φ, t) + pl(λ, φ, t) + pb(λ, φ, z, t), (6.10)

where pa is the atmospheric pressure, pl is the surface lid pressure, and pb is the hydrostatic
pressure arising from the ocean’s density field. The surface lid pressure is the pressure which
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This system can be solved for ψo using some time-stepping scheme, such as leap-frog. The sec-
ond BVP is a time-independent unforced elliptical problem with constant boundary conditions
on the islands

∇h ∧
(

1

H
ẑ ∧ ∇hψr

)
= 0 everywhere, except island boundaries (6.43)

ψr = 1 on islands. (6.44)

This BVP can be solved for ψr using some type of an elliptical solver, such as congugate
gradient. The full streamfunction is built from the sum

ψ(λ, φ, t) = ψo(λ, φ, t) +
R∑

r=1

µr(t)ψr(λ, φ), (6.45)

which can be shown to satisfy the original boundary value problem.

6.5.3 Island integrals for the volume transport

As a final step in the streamfunction solution, it is necessary to formulate a prognostic equation
for the volume transports µr(t). To do so, reconsider the elliptical problem for the streamfunc-
tion

∇h ∧
(

1

H
ẑ ∧ ∇hψt

)
= − 1

ρo
∇h ∧

(
∇hpb −G

)
. (6.46)

Now integrate both sides over the area bounding a particular island with label r, and employ
Stokes’ Theorem. The direction normal to the island’s surface is ẑ, and the area element on the
island is dΩr. The left hand side becomes

∫ ∫
ẑ dΩr ∇h ∧

(
1

H
ẑ ∧ ∇hψt

)
=

∫ ∫
ẑ dΩr ∇h ∧

(
1

H
ẑ ∧ ∇hψr

)
µ̇r

= µ̇r

∮
dl t̂ · 1

H
ẑ ∧ ∇hψr

= −µ̇r

∮
dl n̂ · 1

H
∇hψr, (6.47)

where t̂ ∧ ẑ = −n̂ was used, and n̂ represents the outward normal to the island boundary. The
right hand side becomes

−
∫ ∫

ẑ dΩr ∇h ∧
1

ρo
∇h ∧

(
∇hpb −G

)
= − 1

ρo

∮
dl t̂ · (∇hpb −G). (6.48)

Equating yields the prognostic equations for the volume transports around an island

µ̇r =
1

ρo

∮
dl t̂ · (∇hpb −G)
∮

dl n̂ · 1
H∇hψr

. (6.49)
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This gradient is needed in the horizontal momentum equations. In this expression, the first
term arises from horizontal gradients of the atmospheric pressure, the second term from
horizontal gradients of the free surface height, and the third term from the vertically integrated
baroclinicity in the ocean column above the depth z. It is the gradient of the free surface height
which is responsible for fast gravity waves, and so it must be separated from the baroclinic
model part.

Now consider the integral

∫ η

z

∇hρ dz′ =

∫ η

0

∇hρ dz′ +

∫ 0

z

∇hρ dz′. (7.3)

The first integral is over the very small vertical distance from the resting ocean height z = 0
to the free surface height z = η, with the free surface height |η| ≈ 100 − 200 cm at the most. In
this region, the ocean has very small vertical density gradients due to the strong mixing effects
from interactions with the atmosphere. Therefore, it is quite accurate to assume that

ρ(z = η) ≈ ρ(z = 0). (7.4)

This approximation leads to the expression

g

∫ η

z

∇hρ dz′ ≈ g η∇hρ(z = 0) + g

∫ 0

z

∇hρ dz′

= g η∇hρ(0) + ∇hpb, (7.5)

where

pb(λ, φ, z, t) = g

∫ 0

z

ρ(λ, φ, z′, t) dz′ (7.6)

defines the hydrostatic pressure field associated with density in the vertical column between
z and a resting ocean surface z = 0. In turn, the horizontal gradient of this field, ∇hpb =

g
∫ 0

z
∇hρ dz′, arises from baroclinic effects in that part of the ocean between the resting ocean

surface and the depth z. It is for this reason that pb is often termed the baroclinic pressure field.
Note that the full depth integral of pb does not vanish, as may mistakenly be construed by the
adjective “baroclinic.”

As a result of the well mixed assumption, the horizontal pressure gradient can be written

∇hp = ∇h (pa + pb) + g∇h [ηρ(z = 0)]

= ∇h (pa + pb + ps). (7.7)

In this expression, the surface pressure

ps(λ, φ, t) = gρ(z = 0) η, (7.8)

was introduced. This is the hydrostatic pressure head associated with the surface height, where
again is it assumed that the density field is well mixed between z = 0 and z = η. The total
hydrostatic pressure field has been written

p = pa + pb + ps. (7.9)

For z < 0 the depth dependent baroclinic pressure is separated from the depth independent
atmospheric and surface pressures. Such a separation is important for the methods described
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plotted in MOM’s snapshots when the free surface is enabled. In snapshots,Ψ is called psiU,
and Ψ∗ is called psiV. The reference points are φo is the southern-most latitude and λo is the
western-most longitude.

Additionally, as each streamfunction is defined only up to an arbitrary constant, it is
useful to specify this constant in a manner to correspond to that resulting from the rigid lid
approximation. The option explicit psi normalize normalizes each streamfunction by the value
at λ = 300◦ and φ = −20◦, which corresponds to a point over South America. This convention
corresponds to taking the Americas as the zeroth island in the rigid lid method.

A final example distributes the (−ηt + qw) piece evenly:

Ψ∗∗ = − a

2

∫ φ

φo

dφ′ [U(λ, φ′) −U(λo, φ
′)] +

a cosφ

2

∫ λ

λo

dλ′ V(λ′, φ) (7.76)

yields

U = −1

a
Ψ∗∗,φ +

a cosφ

2

∫ λ

λo

dλ′ (−ηt + qw) (7.77)

V =
1

a cosφ
Ψ∗∗,λ +

a

2 cosφ

∫ φ

φo

dφ′ cosφ′ (−ηt + qw). (7.78)

This streamfunction is not computed in MOM.
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Here the thermodynamic forcing is the difference of the specific humidity ha in some reference
height (usually 10 m) and at the sea surface, hs. The specific humidity is defined as the mass
ratio

h =
mw

m
=
ρw

ρa
(8.18)

where m is the total mass of the air in a volume element and mw the mass of water vapour in the
same volume. Alternatively the difference of the water vapour pressure or the partial density
of water vapour can be used. The kinetic coefficient Cwuwind describes the vertical turbulent
diffusion in the boundary layer and is a function of the wind speed uwind in the reference
height and of the stability of the atmospheric boundary layer. There is a considerable literature
on empirical parameterizations of Cw from experimental data sets. Details can be found for
example in Large and Pond (1982), Smith and Dobson (1984), Rosati and Miyakoda (1988) and
in the literature cited there.

As a result for the calculation of the fresh water flux the specific humidity ha and the wind
velocity uwind must be known in some reference height. This information may come from
an atmosphere model. For the calculation of the drag coefficient Cw additional information
on the stability of the boundary layer, i.e, on the atmosphere temperature is necessary. The
specific humidity at the sea surface, hs, can be calculated from the assumption of saturated
water vapour immediately over the sea surface.

8.4.2 Heat flux into the free surface model

For temperature, the heat balance in the upper box has to be considered. The heat flux enters
the ocean through a boundary layer which has an atmospheric and an oceanic component.
There are four major contributions to the heat flux,

• the insolation,

• the infrared radiation balance between ocean and atmosphere,

• the sensible heat flux, which is basically a turbulent diffusion of heat,

• the heat transfer in connection with a fresh water flux. This effect involves a direct energy
flux in connection with the flux of matter and a latent heat due to the liquid-vapour phase
transition at the sea surface.

The insolation and the infrared radiation are not discussed here. For simple parameterization
see e.g. Smith and Dobson (1984) or Rosati and Miyakoda (1988).

The enthalpy flux Qae through the top of the atmosphere-ocean boundary layer is,

Qae = Q
f resh
ae +Qrad

ae +Qsens
ae . (8.19)

The radiative component Qrad
ae includes insolation and the infrared radiation from the ocean

and the atmosphere. The thermal radiation is emitted or absorbed in a thin skin layer at the sea
surface and the approximation of a surface flux is justified. For the structure of the thermocline
it may be important to resolve the vertial absorption profile of short wave radiation. To do this,
the short wave radiation must be removed from the surface flux and the vertical divergence
of the short wave radiation must be included in the source term. Qsens

ae describes the turbulent

diffusion of heat, Q
f resh
ae is the heat flux in connection with the heat capacity of the fresh water
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advected relative to the sea surface. Under the assumption that the heat flux in the boundary
layer has no vertical divergence, the enthalpy flux from the bottom of the boundary layer into
the ocean, Qwe, is

Qwe = Qae +Qlat
e , (8.20)

where Qlat
e is the latent heat from that amount of fresh water which undergoes a phase transition

at the air-sea interface and can be calculated from the water vapour flux qV
w,

Qlat
e = LQV

w. (8.21)

L is the evaporation heat of fresh water. Qlat
e is positive if the ocean gains heat by condensation

and negative if heat is used for evaporation. It is a common approximation that the latent heat
flux goes directly into the ocean and leaves the atmosphere temperature unaffected.

For a simple parameterization of the sensible heat flux the difference of the bulk virtual po-
tential temperature of the atmosphere,θva and the ocean, θvs, is assumed as the thermodynamic
forcing function,

Qsens
ae = ρacapCTuwind (θva − θvs) . (8.22)

As for the fresh water flux the kinetic coefficient CTuwind describes the turbulent vertical
diffusion of heat and can be parameterized in terms on the wind speed and the stability of the
atmosphere. cap is the specific heat of air at constant pressure, ρa the density of air. The sign
convention is to count a heat flux directed into the ocean as positive.

The heat flux between atmosphere and air-sea boundary layer due to the heat capacity of
the fresh water is

Q
f resh
ae = ρwcpTRQR

w + ρacapθaQV
w. (8.23)

TR is the temperature of the liquid fresh water flux, i.e. of rain, ρw the fresh water density, Ta

the temperature of vapour, which should be the atmosphere temperature. Usually, TR is not
known and simpler approximations are necessary.

Finally, the boundary condition for the potential temperature θ is

Q
di f f

wθ
= θ(η)Qw + ∇hη · Fh(θ) − Fz(θ),

= (cpρ)−1Qwe

= (cpρ)−1
(
Qrad

ae +Qsens
ae + LQV

w + cpTrQ
R
w + capθaQV

w

)
. (8.24)
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9.3.1 Generalized Hooke’s law form

By assuming the form τmn = ρCmnij ei j, one immediately assumes that the only relevant forms
of the viscosity tensor are those satisfying

Cmnij = Cmnji (9.23)

since the strain or deformation tensor ei j is symmetric. This constraint reduces the degrees of
freedom to 3× 3× 6 = 54. The 6 arises from the 3+ 2+ 1 = 6 degrees of freedom in a symmetric
3 × 3 matrix.

9.3.2 Angular momentum

Assuming a symmetric stress tensor brings about the following symmetry on the viscosity
tensor

Cmnij = Cnmij. (9.24)

As such, the total degrees of freedom become 6×6 = 36, which are the same degrees of freedom
in a 6 × 6 matrix.

9.3.3 Dissipation of total kinetic energy

The budget for kinetic energy of a fluid parcel is given by

ρ

2

D(δi j ui u j)

Dt
= ρ δi j ui f j + δi j ui T

jk

,k

= ρ ui f i + ∂k (u j T jk) − u j,k T jk

= ρ ui f i + ∂k (u j T jk) − e jk T jk

= ρ ui f i + ∂k (u j T jk) + p u
j

, j
− e jk τ

jk. (9.25)

The first term on the right hand side arises from work done by external forces. The second
term, when integrated over the fluid domain, accounts for work done at boundaries by the
stresses. The third term arises from pressure work against changes in the parcel’s volume.
This term vanishes for a volume conserving fluid. The fourth term is present throughout the
fluid domain, and it can be written

ei j τ
i j = ρ ei j Ci jmn emn. (9.26)

In general, this term is sign-indefinite. However, for a frictional stress tensor which manifests
dissipative friction at each point in the fluid, one requires

ei j Ci jmn emn ≥ 0. (9.27)

Since the strain tensor ei j is symmetric, this constraint can be satisfied if

Ci jmn = Cmnij. (9.28)

This constraint brings the number of degrees of freedom in the viscosity tensor down to
21 = 6+5+4+3+2+1, which is the number of degrees of freedom in a symmetric 6×6 matrix.
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9.3.4 Transverse isotropy

The presence of gravity provides a symmetry breaking from three-dimensional isotropy down
to transverse isotropy about the local vertical direction ẑ. It is important that the stress tensor
also respect this symmetry, which in turn provides constraints on the form of the viscosity
tensor.

In order to understand what transverse, or axial, isotropy imposes on the viscosity tensor,
it is necessary to recall that a fourth order tensor transforms under a change of coordinates in
the following manner

Ca b c d = Λa
aΛ

b
bΛ

c
cΛ

d
d Cabcd. (9.29)

Transverse isotropy means two things. First, the physical system remains invariant under
arbitrary rotations about the ê3 direction, where ê3 = ẑ is the vertical direction. Second, the
physical system remains invariant under the transformation z→ −z, and x→ y, y→ x, which
is a transformation between two right handed coordinate systems, with the vertical pointing
up and down, respectively. The transformation matrix for the rotational symmetry takes the
form of a rotation about the vertical

Λa
a =




cosα sinα 0
− sinα cosα 0

0 0 1


 , (9.30)

and the transformation matrix between right handed systems takes the form

Λa
a =




0 1 0
1 0 0
0 0 −1


 . (9.31)

Imposing the constraint that

Ca b c d ≡ Cabcd

= Λa
aΛ

b
bΛ

c
cΛ

d
d Cabcd, (9.32)

where Λa
a is one of the given transformation matrices, provides for relations between the 21

remaining elements of Cabcd.
To determine the relations between the elements of Cabcd requires no more than careful

enumeration of the possibilities. For example, with a rotation angle of π/2 about ẑ, rotational
symmetry implies

C1 2 2 2 ≡ C1222 = −C2111. (9.33)

However, the transformation between the two right handed coordinate systems implies

C1222 = C2111. (9.34)

These two results are satisfied only if

C1222 = C2111 = 0. (9.35)

For a rotation of π/4, isotropy implies

C1111 = (C1111 + C1122 + 2 C1212)/2, (9.36)
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or
C1212 = (C1111 − C1122)/2. (9.37)

Continuing in this manner implies that the only nonzero elements of Ci jmn are Ci ji j, where
i , j, and Cii j j. The relation between these nonzero elements can be written

Cii j j ≡ ci j =




c11 c12 c13

c12 c11 c13

c13 c13 c33


 , (9.38)

and

C1212 = (c11 − c12)/2 (9.39)

C2323 = C1313 = c44/2, (9.40)

which brings to five the total number of independent degrees of freedom.

9.3.5 Trace-free frictional stress

The frictional stress tensor under consideration here is a deviatoric stress tensor (e.g.,Smagorin-
sky 1993, Salmon 1998), which is defined to have a zero trace

δik τ
ik = τii = 0. (9.41)

Consequently,

Ciimn emn = (C1111 + C1122 + C3311) (e11 + e22) + C3333 e33. (9.42)

Since MOM assumes an incompressible fluid, the trace of the strain or deformation tensor also
vanishes

emm = um,m = 0. (9.43)

As such, a trace-free frictional stress tensor implies the following relation between the viscosity
tensor elements

C3333 = C1111 + C1122 − C3311, (9.44)

or
c33 = c11 + c12 − c13. (9.45)

9.3.6 Summary of the frictional stress tensor

In summary, the viscous stress tensor is given by

τmn = ρ




e11 (c11 − c13) + e22 (c12 − c13) e12 (c11 − c12) e13 c44/2
e12 (c11 − c12) e11 (c12 − c23) + e22 (c11 − c13) e23 c44

e13 c44 e23 c44 e33 (c33 − c13)


 . (9.46)

Motivated by Wajsowicz (1993) and Smagorinsky (1993), define the kinematic viscosity coeffi-
cients

ν = 3α = (c11 + c12)/2 − c13, (9.47)

A = β = (c11 − c12)/2 (9.48)

κ = γ = c44/2, (9.49)
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where ν,A, κ is the notation used in Wajsowicz (1993), and α, β, γ is the notation used in
Smagorinsky (1993). The stress tensor components now take the form

τmn = ρ




(A + ν) e11 + (ν − A) e22 2 A e12 2κ e13

2 A e12 (ν − A) e11 + (ν + A) e22 2κ e23

2κ e13 2κ e23 2 ν e33


 (9.50)

which exposes a total of three viscous degrees of freedom.

9.3.7 Quasi-hydrostatic assumption

As MOM is designed for large-scale ocean modeling, it is a good approximation to assume mo-
tions maintain the hydrostatic balance. So far as the stress tensor is concerned, this assumption
boils down to setting the viscosity coefficient ν to zero (Smagorinsky 1993),

ν = 0. (9.51)

It also amounts to approximating the following off-diagonal strains as

2 e13 ≈ u1 ,3 (9.52)

2 e23 ≈ u2 ,3. (9.53)

The resulting stress tensor is given by

τmn = ρ




A (e11 − e22) 2 A e12 2κ e13

2 A e12 A (e22 − e11) 2κ e23

2κ e13 2κ e23 0


 , (9.54)

= ρ




A (u1,1 − u2,2) A (u1,2 + u2,1) κu1,3

A (u1,2 + u2,1) A (u2,2 − u1,1) κu2,3

κu1,3 κu2,3 0


 , (9.55)

which exposes the familiar two viscous degrees of freedom. The scales

A >> κ ≥ 0 (9.56)

are relevant for large-scale stratified GFD flows. Generalizations for non-hydrostatic applica-
tions are given in Williams (1972).

9.3.8 Cartesian form of the friction vector

The friction vector in Cartesian coordinates is given by the divergence of the frictional stress
tensor

ρ Fm = τmn
,n . (9.57)

Performing the divergence leads to the components

ρ F1 = ∇h · (ρA∇h u1) + ẑ · ∇h u2 ∧ ∇h ρA + [ρκ (u1,3)],z (9.58)

ρ F2 = ∇h · (ρA∇h u2) − ẑ · ∇h u1 ∧ ∇h ρA + [ρκ (u2,3)],z (9.59)

ρ F3 = 0. (9.60)
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In these expressions, the horizontal divergence operator ∇h = (∂1, ∂2, 0) was introduced, and
z = ξ3 is the vertical coordinate. The factors of density cancel out trivially upon making the
Boussinesq approximation. Note that when making the quasi-hydrostatic approximation, the
vertical friction F3 is set to zero so that the vertical momentum equation reduces to the inviscid
hydrostatic equation. The extra cross-product terms appearing in the transverse friction vanish
when using a constant viscosity. Their importance when using a spatially nonconstant viscosity
is briefly highlighted in the next section.

9.3.9 The case of nonconstant viscosity

It is not uncommon for ocean modelers to employ a nonconstant viscosity for various numeri-
cal reasons. As emphasized by Wajsowicz (1993), some implementations of the corresponding
friction vector often ignore the importance of formulating friction as the divergence of a sym-
metric stress tensor. Namely, what is sometimes done is to simply take the friction appropriate
for a constant viscosity for a Boussinesq fluid

F1
const = ∇h · (A∇h u1) + [κ (u1,3)],z (9.61)

F2
const = ∇h · (A∇h u2),+[κ (u2,3)],z (9.62)

and then letting A be nonconstant. That is, the cross-product terms derived above are dropped.
Focusing on the two-dimensional transverse sub-space, doing so amounts to employing the
non-symmetric stress tensor

τmn
NS = ρo A

(
u1,1 u1,2

u2,1 u2,2

)
. (9.63)

It is easy to show that the chosen friction dissipates kinetic energy since it is written as a
Laplacian. However, for a fluid in uniform rotation

u = Ω ∧ x, (9.64)

where u = (u1, u2, 0), x = (x1, x2, 0), and Ω is spatially constant, the horizontal friction vector
takes the form

Fh = −∇ ∧ (AΩ), (9.65)

and it vanishes only when A is a constant. As such, by using friction derived from a non-
symmetric stress tensor and with a non-constant viscosity, a uniformly rotating fluid will feel
a nonzero stress. Conversely, such a stress tensor can introduce uniform rotation; i.e., it can
act as an internal source or sink of angular momentum. Unless one has a physical reason for
doing so, such viscosity dependent sources of angular momentum should be avoided.

9.4 Orthogonal curvilinear coordinates

The purpose of this section is to derive the stress tensor and the corresponding friction vector in
orthogonal curvilinear coordinates. The derivation requires a fair amount of calculations using
curvilinear tensors. Since there are ocean models running with general curvilinear coordinates,
the following derivation for general coordinates may be of use for understanding the form of
friction used in those models.
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9.4.1 Some rules of tensor analysis on manifolds

For many pragmatic situations, the rules of tensor analysis can be thought of as a systematic
way to apply the chain rule on curved manifolds. More fundamentally, tensor analysis provides
a general formalism which efficiently exploits the linkage between analysis and geometry. In
turn, it can render a deeper and more concise description of physical laws without being
diverted by often cumbersome coordinate dependent statements.

One of the key reasons that tensor analysis is so useful in physics is that an equation written
in a form which respects a basic set of tensor rules remains form invariant under changes in
coordinates. Consequently, one can work within a simple set of coordinates, such as Cartesian,
in order to establish results which are then easily generalizable to other coordinates. This result
allows for much of the discussion in this chapter to employ Cartesian tensors, as in the work
of Smagorinsky (1993) and Wajsowicz (1993). However, to facilitate the eventual transition to
curvilinear coordinates, the approach taken here is to employ the notation of curvilinear tensor
analysis (e.g., Aris 1962).

The purpose of this section is to summarize salient aspects of tensor analysis. Use of the
following rules and ideas will prove sufficient.

• Conservation of indices: Lower and upper tensor indices are balanced across equal
signs.

• Einstein summation convention: Repeated indices are summed, unless otherwise noted.

• Metric tensor: The metric tensor provides a means to measure the distance between two
points on a manifold:

(ds)2 = gmn dξm dξn. (9.66)

In this expression, (ds)2, often written ds2, is the squared infinitesimal arc-length between
the points, ξm is the coordinate for a point, and m = 1, 2, 3 labels the coordinate (m is not
a power).

The metric for spherical coordinates on a sphere is diagonal. With coordinates (ξ1, ξ2, ξ3) =
(λ, φ, r), where λ is longitude and φ latitude, the metric is

gmn = diag(gλλ, gφφ, grr) = diag(r2 cos2 φ, r2, 1). (9.67)

The inverse metric components gmn will also be needed, and they are given by

gmn = diag((r cosφ)−2, r−2, 1). (9.68)

In Cartesian coordinates, the metric tensor is given by

gmn = δmn = δ
mn = δm

n , (9.69)

where δ is the unit or Kronecker delta tensor. There is no distinction between raised and
lowered indices in Cartesian coordinates, hence the ability to jettison the conservation of
indices rule. For curvilinear coordinates, however, this rule is essential.

• Covariant and contravariant: A lower label is often termed “covariant” and an upper
label “contravariant.” The mnemonic “co-low” assists in remembering the terminol-
ogy. Modern tensor language jettisons this terminology, yet it will be sufficient for the
following.
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Covariant and contravariant tensors can be considered dual, where the connection is
through the metric tensor. For example, the covariant components to the velocity vector
um are related to the contravariant components through

um = gmnun. (9.70)

Some examples are useful. In Cartesian coordinates, the velocity vector takes the familiar
form

(u1, u2, u3) = (u1, u2, u3) =

(
Dx

Dt
,

Dy

Dt
,

Dz

Dt

)
, (9.71)

where again there is no distinction between covariant and contravariant for Cartesian
tensors. In spherical coordinates, however,

(u1, u2, u3) =

(
Dλ

Dt
,

Dφ

Dt
,

Dr

Dt

)
, (9.72)

whereas the covariant components are

(u1, u2, u3) =

(
(r cosφ)2 Dλ

Dt
, r2 Dφ

Dt
,

Dr

Dt

)
. (9.73)

• Notation: As the above indicates, for curvilinear tensor analysis the difference between a
raised and lowered label is important. Additionally, in order to avoid confusion, partial
derivatives will be denoted with a comma:

um ,n =
∂um

∂ξn
. (9.74)

• Covariant derivative: In order to account for nonconstant unit vectors on a curved man-
ifold, it is necessary to generalize partial derivatives to so-called covariant derivatives.
In particular, the strain tensor (described later) has components

emn =
1

2
(um ; n + un ; m), (9.75)

where the comma has been generalized to a semi-colon.

For a “torsionless” manifold, such as a sphere, each component of the metric tensor has
a vanishing covariant derivative

gmn;p = 0. (9.76)

This is a trivial property for Cartesian coordinates on a plane, in which case the metric is
the constant unit tensor and the covariant derivative a partial derivative

δmn;p = δmn,p = 0. (9.77)

However, for curvilinear coordinates gmn;p = 0 is quite useful. For example, it provides
for the convenient relation

um;n = (gmp up) ;n

= gmp u
p
;n. (9.78)
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This result brings the strain tensor to the form

2 emn = gmp u
p
;n + gnp u

p
;m. (9.79)

In general, the covariant derivative of a vector on a torsionless manifold is given by

u
p
;n = u

p
,n + Γ

p
mn un, (9.80)

where Γ
p
mn are components to the Christoffel symbol, which is given by

Γ
p
mn =

1

2
gpq (gqm,n + gqn,m − gmn,q). (9.81)

A more geometric means of understanding the Christoffel symbol is to note that they
form the expansion coefficients of the partial derivative of the basis vectors for a manifold

~ea,b = Γ
m
ab
~em. (9.82)

That is, the Christoffel symbol accounts for the nonzero changes in the basis vectors on a
curved manifold. Note that it is symmetric on the lower two labels:

Γ
p
mn = Γ

p
nm, (9.83)

which is the defining property of torsionless manifolds.

• Transformation rules: Under a coordinate transformation

ξm = ξm(ξm), (9.84)

tensors transform as, for example,

emn = Λm
m
Λn

n
emn, (9.85)

where the transformation matrix is given by the partial derivatives

Λm
m
=

∂ξm

∂ξm
. (9.86)

Sometimes it is useful to write the transformation matrix in traditional matrix form. The
convention is that the index which is placed a bit closer to the Λ denotes the row (m in
Λm

m
), and the one pushed away a bit is the column (m inΛm

m
). The inverse transformation

of a tensor takes the form

emn = Λm
mΛ

n
n emn, (9.87)

where the inverse transformation matrix is given by

Λm
m =

∂ξm

∂ξm
. (9.88)

Generalizations to tensors of different order follow analogously.
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9.4.2 Orthogonal coordinates

The metric tensor for orthogonal coordinates is diagonal

gi j = diag(g11, g22, g33), (9.89)

where the components gi j = gi j(t, ξ1, ξ2, ξ3) are generally functions of space-time. The infinitesi-
mal arc-length measuring the distance between any two closely spaced points is therefore given
by the diagonal quadratic-form

ds2 = g11(dξ1)2 + g22(dξ2)2 + g33(dξ3)2

= (h1 dξ1)2 + (h2 dξ2)2 + (h3 dξ3)2, (9.90)

where the metric functions gmm = (hm)2, with no sum, are often useful to introduce. Addition-
ally, the relation between covariant and contravariant components of a tensor is given through
a single multiplication. For example,

um = gmn un

= gmm um, (9.91)

relates the covariant velocity components um to the contravariant components um. Importantly,
there is no sum on the m label in the last expression.

For the purposes of large-scale ocean modeling, it is usually sufficient to assume the simpler
form of the metric

gi j = diag(g11, g22, 1), (9.92)

where the nontrivial metric components are independent of time. This assumption follows
from the quasi-hydrostatic approximation and will be made in the following.

In the following, the determinant of the metric tensor

G = g11 g22 g33 (9.93)

will appear quite frequently. With the quasi-hydrostatic approximation for which g33 = 1, the
determinant is given by

G = g11 g22 = (h1 h2)2. (9.94)

9.4.3 Physical components of tensors

In many applications, it is useful to introduce the physical components of a tensor (see Section
7.4 of Aris or 4.8 of Weinberg). For example, the velocity field using spherical coordinates is
often written

(u, v,w) =
(√

gλλ uλ,
√

gφφ uφ,
√

grr ur
)

=

(
r cosφ

Dλ

Dt
, r

Dφ

Dt
,

Dr

Dt

)
. (9.95)

Additionally, the infinitesimal displacements along the coordinate directions on the sphere are
given by

(δx, δy, δz) =
(
(r cosφ) δλ, r δφ, δr

)
. (9.96)
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− τ11 ∂1 ln
√

g11 + τ
11 ∂1 ln

√
g22

= τ11
,1 + τ

11 ∂1 lnG + (g11

√
G)−1(g11

√
G τ12 ),2 + (g11

√
G)−1(g11

√
G τ13 ),3

= G−1 (G τ11),1 + (g11

√
G)−1(g11

√
G τ12 ),2 + (g11

√
G)−1(g11

√
G τ13 ),3

=

√
g11

G (g22 ρA DT),x +
1

g11
√

g11
(g11 ρA DS),y + g−1/2

11
(ρκu,z),z (9.113)

where the last step introduced the physical components, and the depth independence of the
metric components has been used. Multiplying by

√
g11 determines the physical component

to the generalized zonal friction

ρ Fx = g−1
22 (g22 ρA DT),x + g−1

11 (g11 ρA DS),y + (κu,z),z. (9.114)

Similar considerations lead to the second friction component

ρ F2 = G−1 (G τ22),2 + (g22

√
G)−1(g22

√
G τ21 ),1 + (g22

√
G)−1(g22

√
G τ31 ),3. (9.115)

Multiplying by
√

g22 leads to the generalized meridional friction component

ρ Fy = −g−1
11 (g11 ρA DT),y + g−1

22 (g22 ρA DS),x + (ρκ v,z),z. (9.116)

Again, for Boussinesq fluids, the factors of density can be canceled on both sides, since each are
formally replaced by ρo. For non-Boussinesq fluids, the cancelation is also often performed,
since the values of the kinematic viscosities are not precisely known.

9.4.7 Effects on kinetic energy

Although it has been built into the formalism, it is useful to explicitly show that the friction
dissipates horizontal kinetic energy. For this purpose, recall that the kinetic energy for a parcel
of fluid is the scalar quantity

2 K = ρ dV um um

= ρ dV gmn un um, (9.117)

where m = 1, 2 represents the label for the horizontal coordinates. The evolution of this energy
is given by

K̇ = dV gmn un (ρ f m + T
mp
;p ), (9.118)

where mass conservation and Newton’s Law were employed. Consequently, friction con-
tributes to the evolution of kinetic energy through the term

dV gmn un τ
mp
;p = ρ dV gmn un Fm. (9.119)

The question then arises as to whether ρ dV gmn un Fm integrated over the horizontal extent of
the domain is negative semi-definite, which would be the case for dissipative friction. First
note that the term um (κum

,z ),z is not at issue here; it appears in the same form as for Cartesian
coordinates and has well known dissipative properties. Some manipulations using previous
results from this section yield

∫
dV um τ

mp
;p =

∫
dV [(um τ

mp) ;p − τmp um ;p]. (9.120)
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• The fluid motion is quasi-hydrostatic.

• The friction exhibits lateral or transverse isotropy in which gravity picks out the only
special direction.

Each of these properties is satisfied by the following two components to the friction

ρ Fx = g−1
22

(g22 ρA DT),x + g−1
11

(g11 ρA DS),y + (ρκ v,z),z (9.126)

ρ Fy = −g−1
11

(g11 ρA DT),y + g−1
22

(g22 ρA DS),x + (ρκ v,z),z (9.127)

With the Boussinesq approximation, the factors of density are formally replaced by the constant
ρo, and so cancel out from these expressions. The metric tensor is assumed to be diagonal and
to define the infinitesimal distance between two points as

ds2 = (h1 dξ1)2 + (h2 dξ2)2 + dz2 = dx2 + dy2 + dz2 (9.128)

In this expression, the metric components g11 = h2
1

and g22 = h2
2

are functions only of the
transverse coordinates, and the physical displacements

dx = h1 dξ1 (9.129)

dy = h2 dξ2 (9.130)

have dimensions of length. The corresponding physical components of the partial derivative
operators

∂x = h−1
1 ∂1 (9.131)

∂y = h−1
y ∂2 (9.132)

bring the horizontal tension to the form

DT = h2 (u/h2 ),x − h1 (v/h1 ),y (9.133)

and the horizontal shearing strain

DS = h1 (u/h1 ),y + h2 (v/h2 ),x (9.134)

DT and DS are generically called the deformation rates, and the each have dimensions of
t−1. In spherical coordinates, (ξa, ξ2) = (λ, φ), h1 = a cosφ, h2 = a, and ∂x = (a cosφ)−1 ∂λ,
∂y = a−1 ∂φ. The viscosity A is generally a function of the fluid flow, and it has dimension
L2/t. The generalized curvilinear coordinates x, y, z are physical components, and so each has
dimension of length. Likewise, the corresponding physical velocity components (u, v,w) have
dimension L/t.

9.5 Biharmonic friction

The previous derivations were all concerned with second order, or Laplacian, friction. It is
often useful to consider another method of dissipating momentum through use of a fourth
order, or biharmonic, friction. Such friction acts more strongly on the small scales than the
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where

DT = u,x − v,y − (v/a) tanφ

= (a cosφ)−1 (u,λ − v,φ cosφ − v sinφ)

DS = v,x + cosφ (u/ cosφ),y

= (a cosφ)−1 (v,λ + u,φ cosφ + u sinφ). (9.181)

The terms

Fu =
1

a cosφ

∂(A DT)

∂λ
+

1

a cos2 φ

∂(A cos2 φDS)

∂φ
(9.182)

Fv =
1

a cosφ

∂(A DS)

∂λ
− 1

a cos2 φ

∂(A cos2 φDT)

∂φ
(9.183)

can be massaged into the form presented by Bryan (1969) and Wajsowicz (1993); that is the
purpose of the remainder of this section.

9.8.2 Zonal friction

The lateral friction acting on the zonal velocity takes the expanded form

a Fu =
1

cosφ
(DT ∂λA + A ∂λ DT)

+
1

cos2 φ
(DS ∂φA cos2 φ + A ∂φDS cos2 φ − 2 A DS cosφ sinφ)

=
1

cosφ
(DT ∂λA +DS ∂φA cosφ)

− 2A

a cosφ
(v,λ tanφ + u,φ sinφ + u sinφ tanφ)

+
A

a cosφ
(u,λλ secφ + u,φφ cosφ + u,φ sinφ + u secφ)

=
1

cosφ
(DT ∂λA +DS ∂φA cosφ)

+
A

a

(
u,λλ sec2 φ + u,φφ − u,φ tanφ + u (sec2 φ − 2 tan2 φ) − 2v,λ sec2 φ sinφ

)

=
1

cosφ
(DT ∂λA +DS ∂φA cosφ)

+
A

a

(
u,λλ sec2 φ + secφ (u,φ cosφ),φ + u(1 − tan2 φ) − 2v,λ sec2 φ sinφ

)
, (9.184)

which renders

Fu = A

(
∇2

h u +
u(1 − tan2 φ)

a2
−

2v,λ sinφ

a2 cos2 φ

)

+
1

a cosφ
(DT ∂λA +DS ∂φA cosφ). (9.185)
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The second bracketed term in this expression arises from the spatial dependence of the viscosity
coefficient, and should be present for any non-constant viscosity coefficient model. These non-
constant viscosity coefficient terms amount to those identified by Wajsowicz (1993).

It is useful to perform one final step in the formulation in order to bring the non-constant
viscosity coefficient inside the Laplacian. For this purpose, the Laplacian and non-constant
viscosity coefficient terms are expanded to yield

Fu =
A

a2 cos2 φ
u,λλ +

A

a2 cosφ
(u,φ cosφ),φ +

A u (1 − tan2 φ)

a2
−

2 A v,λ sinφ

a2 cos2 φ

+
Aλ

a2 cos2 φ
(u,λ − v,φ cosφ − v sinφ) +

A,φ

a2 cosφ
(v,λ + u,φ cosφ + u sinφ)

=
1

a2 cos2 φ
(A u,λλ + A,λ u,λ) +

(
1

a2 cosφ
(A u,φ cosφ),φ − A,φ u,φa−2

)

+
A u (1 − tan2 φ)

a2
−

2 A v,λ sinφ

a2 cos2 φ

− A,λ

a2 cos2 φ
(v,φ cosφ + v sinφ) + a−2 Aφ(v,λ secφ + u,φ + u tanφ)

= ∇h · (A∇hu) +
A u (1 − tan2 φ)

a2
−

2 A v,λ sinφ

a2 cos2 φ

− A,λ

a2 cosφ
(v,φ + v tanφ) +

A,φ

a2 cosφ
(v,λ + u sinφ). (9.186)

This expression can be written as

Fu = ∇h · (A∇hu) + old metricu + new metricu, (9.187)

where

∇h · (A∇hu) =
1

a2 cos2 φ
(Au,λ),λ +

1

a2 cosφ
(A u,φ cosφ),φ (9.188)

is the horizontal Laplacian with the generally non-constant viscosity coefficient inserted. Note
that this Laplacian is acting on the zonal velocity as if it was a scalar field. The term

old metricu =
A u (1 − tan2 φ)

a2
−

2 A v,λ sinφ

a2 cos2 φ
(9.189)

is the metric term employed for constant horizontal viscosity coefficient (Bryan 1969), and

new metricu = − ∂λA

a2 cosφ
(v,φ + v tanφ) +

∂φA

a2 cosφ
(v,λ + u sinφ) (9.190)

is the metric term arising from spatial dependence in the viscosity coefficient (Wajsowicz 1993).

9.8.3 Meridional friction

Repeating the exercise just performed for the zonal friction yields the following lines of algebra
for the meridional friction

aFv =
1

cosφ
(DS ∂λA + A ∂λ DS)
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The metric terms are given by

old metricu =
A Fu (1 − tan2 φ)

a2
−

2 A Fv
,λ

sinφ

a2 cos2 φ
(9.210)

old metricv =
A Fv (1 − tan2 φ)

a2
+

2 A Fu
,λ

sinφ

a2 cos2 φ
(9.211)

new metricu = −
A,λ

a2 cosφ
(Fv
,φ + Fv tanφ) +

A,φ

a2 cosφ
(Fv
,λ + Fu sinφ) (9.212)

new metricv =
A,λ

a2 cosφ
(Fu
,φ + Fu tanφ) +

A,φ

a2 cosφ
(−Fu

,λ + Fv sinφ). (9.213)
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to replace incorrectly computed quantities with correct ones from adjacent domains via
inter-processor communication. Alternatively, the memory window can be bumped up to
the next higher order to include more buffer rows. Another problem with using the single
“j-loop” technique is the arrangement is not flexible enough to cover all possibilities. For
instance, option pressure gradient average which requires tracers to be solved to the north
of velocity cells before baroclinic velocities are solved is problematic.

• Can moving of data within the memory window be eliminated by using indices and
rotating the indices as the window is moved northward?

Yes. If a new set of indices “jm1,jc,jp1” are introduced to refer to rows “j-1,j,j+1” in
the memory window, then instead of moving data, the new indices can be rotated.
This technique would also save memory. There are two disadvantages: for higher
order schemes, new indices need to be introduced (i.e. “jm2” and “jp2” for forth order
schemes); and the scheme is prone to errors. For instance, if an array is referenced with
“j+1” instead of “jp1”, then errors result.




