
MOM1_READ_ME.txt Wed Sep 09 18:31:38 2015 1

<> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <>

 READ_ME file for GFDL MOM 1.0

 R.C. Pacanowski K. Dixon A. Rosati

 Dec 1990

<> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <>

Table of Contents:

(i) General Overview
(ii) Files & Access
(iii) Recommendations
(iv) Coding Design and Features
(v) General Considerations
(vi) Setting Up A Model & Stand-Alone Programs
(vii) Some Notes for Previous Users of the Cox Code
(viii) Options
(ix) Cray Y-MP Considerations & Multi-tasking
(x) Simplified flow chart
(xi) Preview of what’s next
(xii) Addresses For Correspondence

<> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <>

(i) General Overview:

The GFDL Modular Ocean Model (MOM) is a primitive equation general
ocean circulation model intended to be a flexible tool for exploring
ocean and coupled air-sea applications over a wide range of space and
time scales. Its modular design is specifically intended to aid in
flexibility, ease of use, and continued development without sacrificing
clarity.

MOM has been written as a collaborative effort by Ron Pacanowski,
Keith Dixon, and Anthony Rosati at the National Oceanographic and
Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory
in Princeton, New Jersey. It is the successor to the code written by
Michael Cox, documented in the GFDL Ocean Tech Report #1, (1984). As
was the case for the Cox model and the Semtner model (UCLA Dept. of
Meteorology Tech. Report No. 9, 1974) that preceded it, MOM is a
fortran implementation of equations described by Kirk Bryan (1969, J.
Computat. Phys., 4, 347-376).

In the future, a User’s Guide to MOM will become available. For now,
this "READ_ME" file is intended to serve as a guide. Users unfamiliar
with the Cox model are referred to GFDL Ocean Tech Report #1 and the
J. Computat Phys article for a discusion of the numerics.

Comments and suggestions concerning MOM are welcome. Anyone wishing to
develop refinements and/or additions will be acknowledged for their
effort in subsequent releases of MOM. Please contact one of us if
you have something you feel might be worthwhile to add. We suggest
that when developing code, the style and modularity of MOM be followed.
As time permits, new features will be incorporated into MOM.

<> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <>

(ii) Files & Access:

MOM1_READ_ME.txt Wed Sep 09 18:31:38 2015 2

The following files are included:

 a) splitlib.c & mergelib ... two utilities. mergelib
 concatenates all files with suffixes F,f, or h (abbreviated
 as *.[Ffh] files) into one big file.
 splitlib does the inverse... breaking the mergelibed file
 back into its component files (*.[Ffh] files)
 (Note: Functionally, the UNIX "tar" command does the same but
 there may be machine dependencies. If it turns out that there
 are no problems, we will go to "tar" instead.)

 b) mom_x ... the MOM code in mergelibed form. (the
 the "x" is the version number. ie: mom_1.0)

 c) printout ... output from a 3x4 degree world ocean sample
 run on a CRAY YMP

 d) ocean.in ... the input file containing "namelist" input
 needed to run the sample case

 e) READ_ME ... the file you’re looking at

 f) upgrade ... a sample script for source management on
 SUN workstations (for upgrading your changes
 to future versions of MOM)

 g) cray.run ... a sample run deck for running the test case
 on a CRAY YMP

 h) PREP_DATA ... is a directory which contains a collection of
 files (routines & rundecks) for interfacing
 Scripps 1 deg topography, Hellerman & Rosenstein
 wind stress, Oort air temperature, & Levitus
 climatologies directly to MOM. Check the
 included READ_ME file for details.

 i) MOM_NEWS ... if this file exists, it will contain an
 up to date list of bugs & problems with MOM
 along with other relevant info.

How To Access GFDL:

For now, a user in netland will have to use server1’s IP address to gain
access. In the future, we will have domain name service and users will
be able to use a domain address to find us. So for now, in order to
connect to GFDL, a user will have to key in the following command:

ftp 140.208.1.9

Where 140.208.1.9 is the IP address of server1. The user can then log
in as either "ftp" or "anonymous".

Example:

 First, make a directory & a subdirectory and change to it:

mkdir my_mom (for the MOM files)
cd my_mom
mkdir prep_data (for the DATA files)
cd prep_data

MOM1_READ_ME.txt Wed Sep 09 18:31:38 2015 3

 Then, do the ftp & transfer the files:

ftp -i 140.208.1.9
Name (140.208.1.9:xxx): ftp
Password: anything (your last name would do nicely)
cd pub/GFDL_MOM/PREP_DATA (this is the DATA directory)
mget * (transfer the DATA files)
lcd ../ (change local directory)
cd ../ (change remote directory)
mget * (transfer the MOM files)
quit

 Then, change directories & do a directory list:

cd ../
ls -alF

To work with MOM, first create a directory & copy the original files
into it. (Always save your originals. They are needed when upgrading
your changes to newer versions of MOM)
Now, break mom_1.x into its component files by doing:

 cc -o splitlib splitlib.c (to compile the "c" program)
 splitlib mom_1.x (to run it)

Now there should be lots of files. They are:

 a) *.F and *.f files:
....these are the Fortran source files (subroutines, main programs, and
functions)

 b) *.h files:
....these are the "include" files (groups of parameter statements,
common blocks, etc., that are inserted into a *.F file via "#include"
directives)

To merge them back into mergelibed form, do the following:

 mergelib > onebigfile

Note that all the *.[Ffh] files are still left in the directory and
there is a new one : "onebigfile"
Caution: be careful that there are no other .F, .f or .h files in
the directory or they will be incorporated into the "onebigfile".

<> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <>

(iii) Recommendations & Assumptions:

 * We recommend that you first scan the ".h" files after reading
this file. A convenient way to do this (under UNIX) is to use:
 cat *.h > allh
to append all the ".h" files together into file "allh" and then print
it out. All variables should be described in comments (if we missed
some, let us know). Then look at the sample run in file "printout".
Note the section on model options which is produced by subroutine
"docmnt.F". MOM may be "customized" for a particular application by
selecting various combinations of these options.

 * It is strongly recommended that source management be done

MOM1_READ_ME.txt Wed Sep 09 18:31:38 2015 4

on a UNIX based computer (workstation or mainframe). At the very
least, the C-language preprocessor ("cpp") is required. Any computer
that runs "C" should have it. The "cpp" is used stand alone or by
compilers to allow sections of the Fortran code to be selectively
turned on or off during compilation via "ifdef" options. Many
compilers incorporate "cpp" into their processing, even if not
explicitly stated. We use this feature to control which options and/or
modules are used in MOM. While we do source code management and
version control using the UNIX "SCCS" system, the method of source
management is left to the individual. We’ve included "upgrade", based
on SCCS, as an example of one way to do source management on a SUN
workstation:

 Suppose you’ve been working with MOM.old and have added local
 changes to make "MOM.yours". When MOM.new becomes available, you
 would like to take advantage of its new features. How do
 you get MOM.yours upgraded from MOM.old to MOM.new? If your
 modifications are mostly sections of code grouped together (as
 opposed to being spewen everywhere) you might simply "cut &
 paste" them into MOM.new. More extensive changes can be handled
 more or less in an automated way.
 An example using the "upgrade" script follows:

 Create a working directory and copy four files into it: the
 mergelibed forms of MOM.old, MOM.yours, & MOM.new along with
 the "upgrade" script.

 Now run "upgrade" and at the prompts input MOM.old, MOM.yours
 and MOM.new. The script will produce "new_source" which is
 MOM.yours upgraded to MOM.new. It will also most likely point
 out places where possible problems occurred by showing the line
 numbers in "new_source".

 After investigating & fixing all problems (start from the
 highest line numbers (bottom) & work backwords in your favorite
 editor), you should then compare "new_source" with MOM.new
 as in:

 diff MOM.new new_source > my.chgs

 and inspect "my.chgs" to make sure they got in properly.
 Note: If code is altered in MOM.yours and the same code is
 altered in MOM.new but NOT in MOM.old, both the altered code
 from MOM.yours and MOM.new will get into "new_source"

 When satisified, generate the component *.[Ffh] files by
 using:
 splitlib new_source

<> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <>

(iv) Coding Design and Features:

 * Users of previous versions of GFDL’s ocean model codes will
notice that there are many more subroutines in the MOM code. The
modular design is intended to aid in the logical organization of the
code with "hooks" readily available for adding new options to the
model. Deciding which modules to use is done at the pre-processing
level. Modules do NOT interact with each other, but interact with the
main code in only a few places through a short argument list and/or
the include files. This approach to interfacing tends to localize code
modifications, thereby keeping the code structure simple, under-

MOM1_READ_ME.txt Wed Sep 09 18:31:38 2015 5

standable, and easily supplemented. Again, we strongly suggest that
this approach be followed.

 * Variables have been organized and grouped in terms of physical
(and/or logical) significance. This allows for better modularity.
Look at the *.h files. Note that all variables are commented. To find
out where variable yyy is used, use the UNIX command:
 grep -i -n yyy *.[Ffh]
which searches all files with .F, .f, or .h suffixes for the yyy.
(The use of "grep" is invaluable in tracing variables & options and
its use is strongly encouraged)
Note also that the include files may be nested (see the bottom of file
"param.h" for example). When modifying the code, one should
consider whether it is appropriate to add new variables to existing
common blocks and ".h" files, or if a new ".h" file and common block
are called for to enhance modularity. When in doubt, try to minimize
the clutter factor.

 * There are no out-of-bounds references in the MOM code. This
can simplify debugging new code by turning on a compiler’s bounds
checking option. If, on execution, an array subscript goes out of
bounds, the compiler’s bounds checker will let you know where & when.

 * The "slabs" have been defined as four dimensional variables,
utilizing the concept of a memory slab window. Look at file "slabs.h"
for details. This increases the generality and flexibility of the code
and simplifies management of the data flow from disk through memory.

 * Statement functions are used to define physical operators.
This allows one to write code that more closely resembles the
equations. Another advantage is that complicated code can be made more
understandable. At the same time, more operations per loop often allows a
compiler to generate more efficient code. On computers like the CRAY YMP,
this can lead to significantly more parallelism. Look in "tracer.F" and
"clinic.F" to see how we have used them. We’ve also included an option
that allows the use of arrays (instead of statement functions) to
retain terms in momentum and tracer equations. This can be useful when
using the terms often in more than one place. The price for this is
increased memory (but less computation).

<> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <>

(v) General Considerations:

 * MOM is written in standard Fortran-77, except for the use of
the common extension of "namelist".

 * Naming conventions have also been adopted, and appear as
comments in the model. Conventions exist for naming numerical
constants, grid variables, reciprocals, etc. (see "pconst.h"). By
adhering to these rules, one can more easily analyze unfamiliar
sections of the code.

 * The code has been written with the underlying assumption that
memory size has been increasing for the types of computers that the
code is typically run on. So, there are places where we trade-off extra
memory usage in order to achieve clarity, modularity, and to minimize
the probabilty of introducing errors when modifying the code in the
future.

<> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <>

(vi) Setting Up A Model & Stand-Alone Programs:

MOM1_READ_ME.txt Wed Sep 09 18:31:38 2015 6

There are 4 main programs: "ocean", "eqstat", "size",and "depths". The
UNIX loader can only handle one main program in a directory at a time
(makefiles can be utilized to get around this constraint). The program
statements for "eqstat" in "denscoef.F" and "depths" in "depths.f" have
been commented out and replaced by subroutine statements to prevent
problems. The same has been done in "size.f"

The test case is a 4 x 3 degree ("param.h" & "blkdta.F") by 15 level
("depths.f") world ocean model with idealized geometry ("topog.F")
forced by zonally averaged annual mean data ("bcest.F") with initial
conditions specified in "onc1st.F". The domain & resolution can be
easily changed (described below) and the geometry, forcing & initial
conditions adapt themselves accordingly.

 * When setting up a model, first decide on the model dimensional
parameters in "param.h" (Set "imt" through "maxipp" which are
on the first two lines of the parameter statement).

 * Set miscellaneous items to the desired values in "blkdta.F".
As a minimum, these include all quantites that define the grid (stlon,
stlat, xmin, xmax, xwid, idir, ymin, ymax, ywid, & jdir. see "coord.h"
for an explanation of what they are). Ideally, regions of interest
should have constant, though not necessarily the same, grid spacing in
longitude, latitude & depth. Why? Because the numerics are second order
accurate for constant grid spacing. There can be severe truncation in
areas of abrupt changes in resolution. An example of a reasonable
setup might be 1/3 deg spacing in latitude equatorward of 10 deg and
slowly increasing to 1.0 deg at 30 deg. See "coord.h" for how to do it.

 * Set the number & distribution of vertical levels. the program
statement should be placed back into "depths.f", and subroutine
statements put into "eqstat.F" and "ocean.F". You can then compile and
run "depths.f". It is an interactive program that will allow you to
produce a vertical distribution of model levels. It will then produce
a "thick.h" file , which will be used by the model.
(Note: the version included here is a prototype, and is being refined).

 * Next, prepare "eqstat" to be the main program and compile
and run it. It’s located in the module "denscoef.F". It will produce
density coefficients (using the "thick.h" file) in file "dncoef.h",
which are used by the model in subroutine "state.F".

 f77 -o eqstat denscoef.F ...uses the UNESCO equation of
state, while to use the Knudsen-Ekman equation set the "ifdef" option...
 f77 -Dknudsen -o eqstat denscoef.F

 * Prepare the file "ocean.in", which will be read as namelist
input by MOM. Variables that control MOM’s flow (ie: length of
integration, when diagnostics are to done, etc) are documented in
"switch.h", "scalar.h" and initialized in "blkdta.F". Many of them may
be reset by altering their values in the namelist.
Also decide which model "ifdef" options are to be enabled. When using
the "islands" option, the "iland" namelist variables "alonis" & "alatis"
(in ocean.in) must be set. See "index.h" for their definitions ... since
there are no defaults.

 * Now make "ocean.F" the main program, compile and run. In a UNIX
environment, use this form to match the sample printout provided:

 f77 -Dcyclic -Ddiskless -Drestorst -Dconstvmix -Dconsthmix -Dtiming
 -Drigidlid -Dcongrad9pt -Dislands -Dfourfil -o ocean *.[Ff]

MOM1_READ_ME.txt Wed Sep 09 18:31:38 2015 7

 ocean > printout

"cray.run" is a sample run deck for a CRAY YMP. The "-D" options turn on
the "ifdef" options in the model code. The ones shown here are those
that were used to produce the sample printout file.
The previous example showing the use of "grep" to find variables is
also useful for finding out where code related to certain "ifdef"
options is located. (ie: grep -i -n "skipland" *.[Ffh] ... will
show you where code involving the skipland option is.)

The fourth program "size.F" is a stand alone utility. Replace the
subroutine statement with a program statement, compile, and run it.
It will allow you to quickly estimate the memory & disk resources for
various configurations of MOM.

ie: to see the requirements when biharmonic mixing and multitasking are
turned on use:

f77 -D biharmonic -D multitasking -o size size.F
size

(Note: change the parameters within size.F to alter dimensional info)

<> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <>

(vii) Some New Features & Notes for Previous Users of the Cox Code

As noted before, the MOM code is intended to be much more modular
in design than the Cox model and other earlier codes. Increased
modularity and an increased number of code options result in there
being many more subroutines and include files in MOM.
The simplified flow chart in this "READ_ME" file should help users
familiar with the Cox code to follow the flow of MOM.

Refer to the sample "printout" and section (viii) to see the complete
list of currently allowable "ifdef" options. Note that there are options
for doing calculations only over ocean points (as opposed to
everyhwere), choosing various lateral and vertical mixing
parameterizations (explicit or implicity solved) plus a selection of
Poisson solvers including a very accurate 9 pt conjugate gradient scheme
which allows for direct reconstruction of the rigid lid surface
pressure. Various MOM options are controlled by "ifdef" options, rather
than Cox’s "UPDOC" program. It is recommended that you put "ifdef"
options around your code modules and try to keep modules from
interacting as in MOM. Some UNIX tools for source management include:
diff, sdiff, diff3, & SCCS.

Note also that the slabs are defined in a way such that no boundary
conditions have been added onto the slabs. The vertical boundary
conditions can be found in their own common block in "cvbc.h" (common
of vertical boundary conditions). By increasing the number of dimensions
on the slabs to include time level and j-row location "pointers", the
number of slab variable names and do loops that switch time and j-row
positions have been reduced.

New variables have been added and some old ones redefined
(see "coord.h" for examples). There are also "source terms" for the
momentum & tracer equations which allow easy inclusion of sources
and sinks (ie: biology, imposing baroclinic flows, etc)

Consistancy checks are carried out for "ifdef" options along with
various other conditions by subroutine "checks.F". Notice the "warning"

MOM1_READ_ME.txt Wed Sep 09 18:31:38 2015 8

messages. There are printed by "checks.F".

Island calculations are done by line (rather than area) integrals and
the island definition has been simplified by the automatic calculation
of island perimeters ("iperim.F") requiring only that one point within
the island be specified. This allows for easy use of islands within
complex geometries.

A time manager (see "tmngr.F" and "ctmngr.h") controls all time
dependent decisions within the model. Time dependent information such
as length of integration, time between energy diagnostics, etc., are
entered through namelist in units of days (only nmix, the number of
timesteps between mixing timesteps, is not in units of days). This
information is used by "tmngr.F" to decide how logical variables in
"switch.h" are to be set each time step. These logical variables in
"switch.h" control time dependent data flow.

Included in "tmngr.F" are utilities for aiding in interpolating time
dependent boundary conditions (ie: monthly wind stress, etc) to the
time step. However, these are not used in the test case.

Another utility is function "indp", found in "setgrid.F". This function is
used in many places and gives an easy way to map real world coordinates
(latitudes, longitudes, & depths) to the nearest model grid point. This
allows all spatial information to be independent of changes in model
resolution.

In addition to outlawing out-of bounds references in order to improve
the code’s clarity, an attempt has been made to minimize equivalence
statements. Equivalence statements should be added with caution.

The ability to compute volume weighted tracer averages, surface fluxes,
and term balances for the momentum & tracer equations has been added
to facilitate analysis & debugging. These computations can be done
over arbitrary volumes in arbitrary locations. The volume sizes and
locations can be specified using horizontal & vertical masks. (ocean.F)

There is a "snapshot" feature to write instantaneous data for offline
analysis. (See "switch.h" & "iounit.h" for details)

There is also a bottom drag in MOM. It is controlled by the linear
drag coefficient "cdbot". Ther is no bottom drag when "cdbot" = 0.
(See "scalar.h" & "blkdta.F") As in the COX model, lateral boundaries
are no slip for momentum & no flux across boundaries for tracers.

MOM uses "docmnt.F" to arrange data to be written out as a
form of documentation summarizing the model characteristics that
uniquely define a given model run. It also lists the requested "ifdef"
options. The user will need to review this routine when configuring
a model run or adding new options to the code. This feature can be
beneficial to those setting up new model runs, comparing different model
runs, and for analysis purposes.

<> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <>

(viii) Options:

 A very powerful feature of MOM is the ability to define ifdef options
 and configure the model in a manner suitable for the problem being
 investgated. The options are quite extensive and range from various
 subgrid mixing parameterizations to computing performance enhancements.
 The current implementation is such that if there are more than two
 options within a catagory there is no default value, so care should be

MOM1_READ_ME.txt Wed Sep 09 18:31:38 2015 9

 taken to define the desired option. A subroutine "checks" ,wihin MOM,
 searches the selcted options to see if any of them conflict. For example,
 if a user in selecting an I/O scheme turned on both "diskless" (fully
 contained within memory) and "fio" (Fortran dirct access), an obvious
 inconsistency exists and a message to this effect will be printed and
 MOM will halt.

 Options are enabled by using the "-D option" form on the compiling
 statement (as shown above in (vi)). This form may also be used on a
 "cpp" statement (see "cray.run") to preprocess the code before sending
 separate it to the compiler. Here is a terse summary of what’s currently
 available:

 External mode:

 Basically, there are four Poisson solvers. All of them require the
 "rigidlid" option to also be enabled:

 "oldrelax" is the one from Mike Cox’s ocean model. If you use it,
 you should twiddle with "sor" (the overrelaxation constant) to
 minimize the number of scans for your geometry. "crit" controls the
 accuracy. See "relax.F" for more details.

 "congrad5pt" is a conjugate gradient technique. "sor" is not needed
 here but "crit" still controls the accuracy. This scheme is faster
 than "oldrelax" but may be a bit less stable in the presents of steep
 topographic gradients. The surface pressure is calculated only as
 a basis for comparison with "congrad9pt". See "congr5.F" for more
 details.

 "congrad9pt" is another conjugate gradient solver which uses a 9 point
 laplacian instead of the 5 point laplacians used by the other schemes.
 It’s advantage is that it is the most accurate & allows the surface
 pressure to be calculated directly. Reducing "crit" will give better
 results (as shown by the closed line surface pressure integrals in the
 test case) than "congrad5pt" because, as in all other schemes, there
 is significant truncation due to the 5 point numerics. In fact, the
 accuracy of the streram funtion solution is limited only by "crit"
 and computer precision.
 Its down side is that it may have stability problems with for
 topographies with sharp gradients and will take more time. How much
 you ask? It depends on your configuration. Try it and see. See
 "congr9.F" for more details.

 "hypergrid" is a version of "oldrelax" solved using a checkerboard
 technique: first on the black squares, then on the red ones:
 Numerically it’s very much like "oldrelax" ("sor" & "crit" comments
 apply)

 Lateral mixing schemes:

 Lateral mixing applies to both momentum and tracers. One (and only one)
 scheme must be enabled.

 "consthmix" is a linear second order mixing with constant eddy
 coefficients: "am" for momentum & "ah" for heat. The idea is
 to choose them just large enough to suppress small scale numerical
 noise. Typical vaules would be "am" = 1.e7 cm**2/sec for a one degree
 resolution. Usually "ah" is chosen smaller so as not to diffuse
 away frontal features.

MOM1_READ_ME.txt Wed Sep 09 18:31:38 2015 10

 "biharmonic" is a linear fourth order mixing with constant
 coefficients as in "consthmix": "am" for momentum & "ah" for heat.
 This is more scale selective than "consthmix" (ie: more severly
 damps the small scale features). "am" should be roughly 10**19
 to 10**20 cm**4/sec (the minus sign is in the eqns) for a 1/3 degree
 resolution.

 "nlhmix" is the non-linear horizontal subgrid-scale mixing after
 Smagorinsky. In this formulation, the horizontal eddy diffusion
 coefficient is proportional to the horizontal grid length and to the
 local deformation field. The coefficients are sensitive to the spatial
 scales of motion and therefore are relatively small in the open ocean,
 where the scales of motion are comparatively large, and are relatively
 large in regions where the scales are comparatively small.

 Vertical mixing schemes:

 Vertical mixing applies to both momentum and tracers. One (and only
 one) scheme must be enabled. The default is for explicit solution.
 Option "implicitvmix" will solve them implicitly.

 "constvmix" uses constant eddy coeficients "fkpm" & "fkph" for linear
 second order mixing of momentum & heat in the vertical. In the
 explicit case (no "implicitvmix"), convective
 adjustment handles regions of gravitational instability. If
 "implicitvmix" is selected, then the convective section is bypassed
 and the large limits "vdclim" & "vvclim" are used to set the mixing
 coeffiecints which handles the instability.

 "ppvmix" is a vertical mixing scheme based on the Pacanowski &
 Philander richardson mixing scheme (jpo vol 11, #11, 1981).
 This parameterization was designed primarily for equatorial models
 with vertical resolution of about 10 meters between levels in the
 upper ocean (we were most interested in the structure of the
 undercurrent). Previous versions of this code assumed the "t" grid was
 coincident with the "u" grid and gave good results. In the present
 case, we relaxed this assumption. We tried this a few ways and got
 lots of numerical noise, (particularly on the equator off Brazil).
 The present configuration minimizes noise. If noise develops off
 steep shelf breaks it can sometimes be suppressed by turning on a
 bottom drag ("cdbot"). The background mixing "bvdc" should be
 kept << 1.0 to avoid diffusing the thermocline away on long time
 scales.
 In regions of gravitational instability, vertical mixing limits
 "vdclim" & "vvclim" are used. In the explicit case (no "implicitvmix")
 they must satisfy the "cfl" criterion and may be too small to remove
 the instability. However, the convective adjustment is operative and
 tries to remove the instability. Whether it does or not depends on
 "ncon" which controlls the number of passes through the convective
 section. If "implicitvmix" is used, "vdclim" & "vvclim" are set large
 and the convective adjustment section is bypassed.
 This scheme also assumes the use of equal time steps on the density
 and momentum equations. If a longer time step is desired, try
 using the "implicitvmix" option.

 "tcvmix" invokes the Mellor-Yamada level 2.5 turbulence closure scheme.
 Here the mixing coefficients are a function of the turbulence length scale
 (l), the turbulent kinetic energy (q**2), the analytically derived
 stability factors (Sm & Sh), and the boundary conditions. There are two

MOM1_READ_ME.txt Wed Sep 09 18:31:38 2015 11

 options to compute the length scale:

 "leq" solves an additional equation for q**2l from which
 the length scale may be derived at each level.

 "lalg" obtains the length scale from an algebraic relationship.
 This option may be sufficient for the boundary layer but not
 in cases where there would be multiple turbulent regimes.

 The horizontal diffusion coefficient of turbulent kinetic energy is set
 using the variable "aq" ("ctcmix.h", namelist, & "blkdta.f"). For this
 scheme to be effective "implicitvmix" should be enabled and also the
 vertical resolution should be sufficient.

 "implicitvmix" solves the vertical diffusion term implicitly for all
 vertical mixing schemes. This allows for large mixing coefficients without
 the need to reduce the timestep. With this option enabled, convective
 adjustment is not done and the unstable density profile is mixed using
 large mixing coefficient limits (vvclim & vdclim). For "constvmix" and
 "ppvmix" these limits are set in "blkdta.F" and for "tcvmix" the
 coefficients are computed.
 "implicitvmix" also requires that "aidif" - the implicit factor - be set
 (see "cvmix.h", namelist, and "blkdta.F").

 0 < aidif < .5 , stable if kappa*dt/dz**2 < 1/(2-4*aidif) ;
 .5 < aidif < 1 , always stable
 where kappa is the max vertical mixing coefficient

 Hybrid mixing schemes:

 These are schemes which apply to either momentum or tracers but not
 both.

 For all cases in which "implicitvmix" is not enabled, convective
 adjustment is the default. This mixes tracers vertically in regions
 of gravitational instability but NOT momentum. The effectiveness of
 convective adjustment is controlled by "ncon" which is the number of
 passes through the convective section (use "grep -i -n ncon *.[Ffh]"
 to see its usage). If "impllicitvmix" is enabled, the convective
 adjustment section is bypassed. The assumption is that the vertical
 mixing schemes will handle it.

 "isopycmix" is a scheme in which a mixing tensor is computed from
 the local isopycnal slope and the diffusion of tracers is then conducted
 along that direction. It therefore influences both the lateral and
 vertical mixing of tracers in the model. Its use is intended to partially
 mitigate a perceived shortcoming of z-coordinate primitive equation ocean
 models in parameterizing oceanic mixing due to mesoscale motions. Since
 such mixing is believed to take place along isopycnal surfaces, the
 "isopycmix" option seeks to orient the mixing of tracers along isopycnal
 surfaces rather than purely horizontal surfaces. As described by Cox
 (Ocean Modelling, issue 74, pg 1-5, June 1987), in addition to specifying
 the mixing coefficient for along isopycnal diffusion "ahisop", a non-zero
 background horizontal mixing coefficient "ah" is often needed to supress
 gridpoint noise. Additionally, a constraint is placed on the steepest
 isopycnal slope "slmxr" that the scheme will consider when computing the
 components of the mixing tensor. A typical value of "slmxr" is 100.0,
 which translates into a slope of 1:100. Steeper slopes would then be
 considered to be 1:100 for the purpose of computing the mixing tensor.
 A vertical mixing scheme must be specified for use with "isopycmix".

MOM1_READ_ME.txt Wed Sep 09 18:31:38 2015 12

 The zz component of the isopycnal mixing is added to the vertical
 diffusion coefficient produced by the vertical mixing scheme. Since
 "isopycmix" only affects tracers, one must also specify a lateral
 mixing scheme from the above list to be used for momentum. This
 additional lateral mixing scheme has no effect on tracer diffusion.

 Grid options:

 "cyclic" is for setting cyclic boundary conditons in a zonal
 direction. If enabled, anything exiting the eastern side of the grid
 comes back in through the western side. If not enabled, then solid
 walls are assumed on the eastern and western boundaries of the model.

 "symmetry" is for setting a symmetric condition across the northern
 boundary of the model. This assumes the line of symmetry is at the
 equator which should be row jmt-1 on the velocity grid.
 The condition is :
 Tracers at row jmt on the "t" grid = tracers at row jmt-1 on the "t"
 grid.
 meridional velocity at row jmt-1 on the "u" grid is zero.
 meridional velocity at row jmt on the "u" grid is the negative of the
 meridional velocity at row jmt-2 on the "u" grid.
 stream funcion at row jmt = negative of the stream function at row
 jmt-1 on the "t" grid.
 If not enabled, solid walls exist at the northern and southern
 boundaries.

 Optimizations:

 "skipland" allows calculations to be done over blocks of ocean while
 skipping land points. The trade off here is the time saved by not
 doing the caluclation over land versus the time used in starting &
 stoping a lot of vectors. It’s really a function of land mass
 geometry. A global ocean would be a good candidate for this option, but
 a idealized basin woulod not.

 "multitasking" allows the slabs to be divided into tasks. Each task
 contains approximately the same number of slabs and there should
 ideally be one task per processor. This is all handled by simply
 spedcifying "ntasks" to be the number of processors (we’ve defaulted
 it to 8 in "blkdta.F"). Since all tasks are independent, all tasks can
 be worked on simultaneously. This reduces the total wall clock time
 for the job but NOT the total cpu time.
 Note: "ntasks" may be set > 1 even when unitasking (one processor) but
 this is not recommended since there is extra work being done at the
 interfaces between tasks. Also, on diagnostic, tracer averaging, and
 data saving time steps, MOM reverts to one task of jmt-2 slabs so
 effectively multitasking is shut down for these time steps.
 "multitasking" currently doesn’t work with the "diskless" (see below)
 option because only two ("ntlev"=2) time levels are used for slabs
 on simulated disk to save memory and this is incompatible with
 "ntasks" > 1. This condition may, in principle, be removed by
 setting "ntlev" = 3 when enabeling the "diskless" option. We haven’t
 explored it yet.
 So far we have gotten to the point where all combinations of
 unitasked, multitasked, & autotasked runs give the same answers down
 to the last hex digit.
 To really utilize this feature on the CRAY YMP, the SSD must be used
 for the slabs (unless large memory & "diskless" is used). We have not

MOM1_READ_ME.txt Wed Sep 09 18:31:38 2015 13

 yet added the best i/o scheme for the SSD, so the wall clock times are
 higher than they should be.

 "timing" gives cp & wall clock times for running on a CRAY YMP.
 Additionally, the time per grid point per time step is calculated.

 Filtering:

 Filtering is used to combat the effect of the convergence of meridians
 (shrinking longitudinal grid spacing) near the poles. The problem is that
 the grid spacing severly limits the time step (especially when using large
 density time steps) due to the "CFL" criterian. Filtering relaxes this
 constraint by truncating high wave numbers.

 "fourfil" is a fourier filter which acts on longitudinal strips of
 ocean points. The number of wave numbers to be allowed at each latitude
 is decided upon & wavenumbers above are truncated (without using any
 reasonable window). The best that can be said for it is that it is
 time consuming, messes the solution up & should only be done as a
 last resort. It is provided as a backward compatability feature for
 the COX code. Note: Both in MOM and in the COX code, the amount of
 filtering depends on the number of ocean points within the
 longitudinal stip. This actually leads to possibly different
 truncations at the same latitude!

 "firfil" is a simple finite impluse response filter based on the
 familiar 1/4, 1/2, 1/4 weights (the response function is a cosine).
 It comes in two flavors: One to with symmetric boundary conditions
 (ie: for tracers) & one for asymmetric boundary conditons
 (ie: momentum). It also works on longitudinal strips of ocean points
 & may be applied an arbitrary number of times for an arbitrary number
 of latitudes. The best that can be said for it is that the reason for
 using it is the same as for "fourfil", it is quite fast, & we really
 haven’t done any long running comparisons to comapre it to "fourfil".

 Miscellaneous:

 "keepterms" allows the use of arrays instead of statement functions
 for component terms in the equations. This may be desirable when using
 component terms over & over for some purpose. The trade off is the
 extra memory needed for the arrays versus the extra time needed to
 recalculate the statement functions. See "size.F" to look at resource
 requirements.

 "nohilats" stands for no high latitudes. If the latitudinal domain of
 the model is limited to equatorial redions, for instance, then the
 metric nonlinear terms in the momentum equations may be dropped. It
 will save some time.

 "restorst" stands for restore surface tracers to some prescribed
 values by a newtonian damping term. In the test case, the restoration
 is globally back to the annual mean conditions on a time scale of
 50 days. Without much work, this option could easily be extended to
 damp certain regions while leaving others alone by simple making
 the damping time scale a function of latitude (for instance).

 "testcfl" tests whether any velocity exceeds the local "cfl" criterion
 by a factor of "cflcrt" (see "blkdta.F"). It will print out the
 places where the "cfl" criterion is most nearly met on diagnostic
 time steps. If the "cflcrt" factor is exceeded on any time step, MOM

MOM1_READ_ME.txt Wed Sep 09 18:31:38 2015 14

 will stop & print out the surronding variables. It’s not meant to be
 left on all the time. If MOM blows up, it can quickly point to where
 it’s happening.

 I/O options:

 "diskless" simulates disk usage using an array in memory. Since
 there is no "wall clock" time lost during disk transfers (because
 they are memory to memory transfers), this method gives the best
 efficiency (cp time / total time). The down side is that the model
 may not be able to fit into available memory. As a memory saving
 feature, "diskless" keeps only two time levels of prognostic
 variables instead of the usual three. See "size.F" to look at
 resource requirements. Also see "multitasking"

 "crayio" for now uses the "getwa/putwa" routines. If the disk units
 are set up on "non SSD" type disk, then the efficiency (cp time /
 total time) will be bad. This shows the mismatch in speed between
 computation & disk use. SSD, however, is really the way to go. It
 can be looked at as an extended memory & the efficiency is much
 better.

 "fio" is for fortran direct access i/o. The comments from "crayio"
 apply here also.

<> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <>

(ix) Cray Y-MP Considerations & Multi-tasking:

 This is not the place to weigh advantages and disadvantages of
multi-tasking on the CRAY Y-MP, however a few things should be
stated. When MOM (with a 1 degree longitudinal resolution with
options "firfil" and "congrad") was autotasked on a 4 processor Y-MP,
the wall clock time was 2.5 times less than the wall clock on a
single processor. That translates to 80% parallelism. However,
CP time increased by 50%. That’s the overhead of synchronization
and idle processor CP time charged to the user. Higher resolutions
will appear more parallel, because the autotasking overhead accounts
for a smaller fraction of the total work done.

The MOM code’s "multitasking" option is still being tested. We expect
very high parallelism with this approach. However, it will have
drawbacks. One is memory explosion (a very large increase in
memory requirements) due to copies of task common needed for
each processor. Another is increased possibility for introducing bugs,
because one has to be much more aware of where variables can be
changed (i.e., setting private variables outside of parallel structures).
In the future, we will improve model performance using both
techniques.

It should be noted that unitasked, autotasked & multitasked versions
of the model give identical anwsers down to the last hex digit! As
time permits, we will continue to look into the performance issues for
each approach.

On one processor of a CRAY Y-MP, MOM runs about 2.6 times faster
than its counterpart on the CYBER 205 (full precision). To give an
overall speed improvement is misleading, since it depends on how
the model is configured. For instance, if options "firfil" and "congrad"
are used it can be 5 times faster than the CYBER 205. Compared to
the Cox model on the CRAY Y-MP on one processor, MOM runs at the

MOM1_READ_ME.txt Wed Sep 09 18:31:38 2015 15

same speed. However, if the "skipland" option is used, MOM can be roughly
25% faster for high resolution (1 degree) world ocean models. On multiple
processors the "autotasked" Cox code is only 37% parallel as compared to
65% for the comparable "autotasked" version of MOM (as measured by one of
our early 6 degree global test cases).

<> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <>

(x) MOM’s Simplified Flow Chart:

OCEAN (main program)
 BLKDTA (initializes variables)
 GRIDS (sets up the grids)
 MESH (utility for setting up grids)
 CMESH (utility for setting up grids)
 INDP (utility for finding nearest grid point)
 DOCMNT (documents the run)
 CNVMIX (sets coefficients for constant vertical mixing)
 OSTART (i/o routine)
 OCN1ST (sets up initial conditions)
 TOPOG (sets up idealized world topography)
 OPUT (i/o routine)
 OPUT (i/o routine)
 IPERIM (calculate island perimeters)
 REG1ST (set up for regional averages of tracers)
 FINDEX (calculates indices for filtering)
 OGET (i/o routine)
 CHECKS (test for consistancy of configuration)
 TMNGR (time manager called once per time step)
 TMNSET (set time dependent logical switches)
 INDP (utility for finding nearest grid point)
 STEP (cycles latitude rows between disk & memory slab window)
 OPUT (i/o routine)
 OFIND (i/o routine)
 OGET (i/o routine)
 GETVAR (gets disk data into memory slab window and adds
 external mode to internal mode velocities)
 DELSQ (calculates quantites for biharmonic mixing)
 SETVBC (set vertical boundary conditions)
 PPMIX (Pacanowski/Philander richardson mixing)
 TCMIX (Mellor Yamada turbulence closure mixing)
 ISOP0 (Isopycnal mixing)
 CFL (for cfl monitoring)
 CLINIC (calculates internal mode velocities)
 STATE (density calculation)
 NLMIX (nonlinear Smagorinsky mixing)
 INVTRI (for implicit vertical diffusion)
 Filtering (FIRFIL or FOURFIL filter u & v at high
 latitudes)
 TRACER (calculates tracers)
 REGION (does basin averages of tracers)
 STATEC (density calculation for vertical stability)
 INVTRI (for implicit vertical diffusion)
 Filtering (FIRFIL or FOURFIL filter tracers at high
 latitudes)
 DIAG (energy diagnostic and term balance calculations)
 INDP (utility for finding nearest grid point)
 MATRIX (printouts)
 VORT (calculates vorticity)
 Filtering (FIRFIL or FOURFIL filter at high latitudes)
 Poisson Solver (RELAX, HYPER, CONGR5, or CONGR9)
 OPUT (i/o routine)
 OGET (i/o routine)

MOM1_READ_ME.txt Wed Sep 09 18:31:38 2015 16

 OFIND (i/o routine)
 DIAG2 (energy diagnostic & term balance printouts)
 OCLOSE (i/o routine)

EQSTAT (main program)
 Density Routine (KNUEKM or UNESCO)
 POTEM (returns potential temperature)
 Density Routine (KNUEKM or UNESCO)
 LSQSL2 (iteratively computes a least squares fit)

DEPTHS (main program)

SIZE (main program)

<> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <>

(xi) Preview of what’s next:

There is no time schedule for the next release ... but here are some
of the things we’re working on:

1) An airsea interface for coupling MOM to atmospheric models.

2) The astronomical relationship between earth & sun for defining
 the solar radiation at the top of the atmosphere at any point
 on the earth and at any time (within a few million years(+/-))
 along with a surface heat budget (longwave, shortwave, sensible,
 latent).

3) Short wave penetration (beyond the first vertical level) for solar
 radiation

4) Free surface option

<> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <>

(xii) Addresses For Correspondence:

Please report errors, bugs, comments, and suggestions to us.

 e-mail address phone number
Keith Dixon kd@gfdl.princeton.edu (609) 452-6574
Ron Pacanowski rcp@gfdl.princeton.edu (609) 452-6527
Tony Rosati ar@gfdl.princeton.edu (609) 452-6584

Omnet/Sciencenet mailbox: K.DIXON fax: (609) 987-5063

Geophysical Fluid Dynamics Lab
US Dept. of Commerce / N.O.A.A.
Princeton Univ. - P.O. Box 308
Princeton, NJ 08542

If you are considering using MOM, please fill-out this form and
send it to one of the above addresses. If you don’t, we will not
be able to let you know of new releases.

MOM1_READ_ME.txt Wed Sep 09 18:31:38 2015 17

GFDL MOM
NAME: __
ADDRESS: __
 __
 __
 __
 PHONE: _____________________ FAX: _____________________
E-MAIL ADDRESS: __
On what type of computer(s) would you expect to run this code?
__
On what type of computer(s) would you expect to manage this
source code? __

<> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <>

